[]
- Autores: Vorotyntsev A.V.1, Markov A.N.1, Dokin E.S.1, Kapinos A.A.1, Emelyanov A.V.1, Grachev P.P.1, Medov V.A.1, Petukhov A.N.1
-
Afiliações:
- Nizhny Novgorod State University named after N.I. Lobachevsky
- Edição: Volume 61, Nº 5-6 (2025)
- Páginas: 312-316
- Seção: Articles
- URL: https://ruspoj.com/0002-337X/article/view/690703
- DOI: https://doi.org/10.31857/S0002337X25030067
- EDN: https://elibrary.ru/lblxdb
- ID: 690703
Citar
Texto integral



Resumo
Sobre autores
A. Vorotyntsev
Nizhny Novgorod State University named after N.I. Lobachevsky
Email: an.vorotyntsev@gmail.com
Gagarin Ave., 23, Building 2, Nizhny Novgorod, 603950 Russia
A. Markov
Nizhny Novgorod State University named after N.I. LobachevskyGagarin Ave., 23, Building 2, Nizhny Novgorod, 603950 Russia
E. Dokin
Nizhny Novgorod State University named after N.I. LobachevskyGagarin Ave., 23, Building 2, Nizhny Novgorod, 603950 Russia
A. Kapinos
Nizhny Novgorod State University named after N.I. LobachevskyGagarin Ave., 23, Building 2, Nizhny Novgorod, 603950 Russia
A. Emelyanov
Nizhny Novgorod State University named after N.I. LobachevskyGagarin Ave., 23, Building 2, Nizhny Novgorod, 603950 Russia
P. Grachev
Nizhny Novgorod State University named after N.I. LobachevskyGagarin Ave., 23, Building 2, Nizhny Novgorod, 603950 Russia
V. Medov
Nizhny Novgorod State University named after N.I. LobachevskyGagarin Ave., 23, Building 2, Nizhny Novgorod, 603950 Russia
A. Petukhov
Nizhny Novgorod State University named after N.I. LobachevskyGagarin Ave., 23, Building 2, Nizhny Novgorod, 603950 Russia
Bibliografia
- Dewar J. The Physical and Chemical Properties of Iron Carbonyl // Proс. R. Soc. L. 1905. V. 76. № 513. P.558–577. https://doi.org/10.1098/rspa.1905.0063
- Gorodkin S.R., James R.O., Kordonski W.I. Magnetic Properties of Carbonyl Iron Particles in Magnetorheological Fluids // J. Phys. Conf. Ser. 2009. V. 149. 012051. https://doi.org/10.1088/1742-6596/149/1/012051
- Milecki A., Hauke M. Application of Magnetorheological Fluid in Industrial Shock Absorbers // Mech. Syst. Signal Process. 2012. V. 28. P.528–541. https://doi.org/10.1016/j.ymssp.2011.11.008
- Wei D., Darcel C. Iron Catalysis in Reduction and Hydrometalation Reactions // Chem. Rev. 2019. V. 119. № 4. P.2550–2610. https://doi.org/10.1021/acs.chemrev.8b00372
- Gao S., Liu Y., Shao Y., Jiang D., Duan Q. Iron Carbonyl Compounds with Aromatic Dithiolate Bridges as Organometallic Mimics of [FeFe] Hydrogenases // Coord. Chem. Rev. 2020. V. 402. 213081. https://doi.org/10.1016/j.ccr.2019.213081
- Watt J., Bleier G.C., Austin M.J., Ivanov S.A., Huber D.L. Non-volatile Iron Carbonyls as Versatile Precursors for the Synthesis of Iron-Containing Nanoparticles // Nanoscale. 2017. V. 9. № 20. P.6632–6637. https://doi.org/10.1039/c7nr01028a
- Yan H., Song X., Wang Y. Study on Wave Absorption Properties of Carbonyl Iron and SiO2 Coated Carbonyl Iron Particles // AIP Adv. 2018. V. 8. № 6. 065322. https://doi.org/10.1063/1.5034496
- Chen D., Zhuang D., Zhao Y., Xie Q., Zhu J. Reaction Mechanisms of Iron(III) Catalyzed Carbonyl-Olefin Metatheses in 2,5- and 3,5-Hexadienals: Significant Substituent and Aromaticity Effects // Org. Chem. Front. 2019. V. 6. № 24. P.3917–3924. https://doi.org/10.1039/c9qo01008d
- Mohamad N., Mazlan S.A., Choi S.B., Imaduddin F., Abdul Aziz S.A. The Field-Dependent Viscoelastic and Transient Responses of Plate-Like Carbonyl Iron Particle Based Magnetorheological Greases // J. Intell. Mater. Syst. Struct. 2019. V. 30. № 5. P.788–797. https://doi.org/10.1177/1045389X19828504
- Mond L., Langer C. XCIII. — On Iron Carbonyls // J. Chem. Soc. 1891. V. 59. P.1090–1093. https://doi.org/10.1039/CT8915901090
- Wildermuth E., Stark H., Friendrich G., Ebenhoch F.L., Kuhborth B., Silver J., Rituper R. Iron Compounds // UEIC. 2000. V. 20. P.41–59. https://doi.org/10.1002/14356007.a14_591
- Hieber W., Geisenberger O. Über Metallcarbonyle. XLVII. Über den Einfluß von Chalkogenen auf die Entstehung von Eisenpentacarbonyl aus den Komponenten // Z. Anorg. Chem. 1950. V. 262. № 1–5. P.332–336. https://doi.org/10.1002/zaac.19502620104
- Banks R.L., Bailey G.C. Olefin Disproportionation. A New Catalytic Process // I&EC Prod. Res. Dev. 1964. V. 3. № 3. P.170–173. https://doi.org/10.1021/i360011a002
- Tang M., Zhang H., Her T.H. Self-Assembly of Tunable and Highly Uniform Tungsten Nanogratings Induced by a Femtosecond Laser with Nanojoule Energy // Nanotechnology. 2007. V. 18. № 48. 485304. https://doi.org/10.1088/0957-4484/18/48/485304
- Xiao C., Liu B., He X. Photolytic Deposition of Tungsten Hexacarbonyl: CVD of W-based Films with the Assistant of UV Beam in Ultra-High Vacuum Condition // Mater. Res. Express. 2019. V. 6. № 8. 086453. https://doi.org/ 10.1088/2053-1591/ab24fc
- Bruno S.M., Valente A.A., Gonçalves I.S., Pillinger M. Group 6 Carbonyl Complexes of N, O, P-ligands as Precursors of High-Valent Metal-Oxo Catalysts for Olefin Epoxidation // Coord. Chem. Rev. 2023. V. 478. 214983. https://doi.org/10.1016/j.ccr.2022.214983
Arquivos suplementares
