Диэлектрические свойства наночастиц оксида меди(II), синтезированных вакуумно-дуговым методом
- Авторы: Карпов И.В.1,2, Ушаков А.В.1,2, Федоров Л.Ю.1,2, Гончарова Е.А.1,2, Брунгардт М.В.1,2
- 
							Учреждения: 
							- Сибирский федеральный университет
- Федеральный исследовательский центр “Красноярский научный центр Сибирского отделения Российской академии наук”
 
- Выпуск: Том 59, № 7 (2023)
- Страницы: 788-795
- Раздел: Статьи
- URL: https://ruspoj.com/0002-337X/article/view/668219
- DOI: https://doi.org/10.31857/S0002337X23070072
- EDN: https://elibrary.ru/PTWIYW
- ID: 668219
Цитировать
Полный текст
 Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Доступ платный или только для подписчиков
		                                							Доступ платный или только для подписчиков
		                                					Аннотация
Исследовано влияние размера наночастиц оксида меди на их электрофизические свойства. Синтезируемые методом вакуумно-дугового осаждения наночастицы охарактеризованы с помощью рентгеновской дифракции, рентгеновской фотоэлектронной спектроскопии и электронной микроскопии для определения их фазового состава и размеров. Показано, что с увеличением температуры подложки при осаждении от 300 до 600 K растет размер образующихся наночастиц от 5.4 до 37.7 нм. Частотные зависимости проводимости, диэлектрической проницаемости и тангенса угла потерь, определенные в интервале от 20 Гц до 1 МГц, демонстрируют размернозависимое поведение наночастиц CuO. В рассматриваемом диапазоне размеров различия диэлектрических характеристик образцов связаны с конкурирующим вкладом резистивной и емкостной составляющих для частиц и межзеренных/ межчастичных границ.
Ключевые слова
Об авторах
И. В. Карпов
Сибирский федеральный университет; Федеральный исследовательский центр “Красноярский научный центр Сибирского отделения Российской академии наук”
														Email: sfu-unesco@mail.ru
				                					                																			                												                								Россия, 660041, Красноярск, Свободный пр., 79; Россия, 660036, Красноярск, Академгородок ул., 50						
А. В. Ушаков
Сибирский федеральный университет; Федеральный исследовательский центр “Красноярский научный центр Сибирского отделения Российской академии наук”
														Email: sfu-unesco@mail.ru
				                					                																			                												                								Россия, 660041, Красноярск, Свободный пр., 79; Россия, 660036, Красноярск, Академгородок ул., 50						
Л. Ю. Федоров
Сибирский федеральный университет; Федеральный исследовательский центр “Красноярский научный центр Сибирского отделения Российской академии наук”
														Email: sfu-unesco@mail.ru
				                					                																			                												                								Россия, 660041, Красноярск, Свободный пр., 79; Россия, 660036, Красноярск, Академгородок ул., 50						
Е. А. Гончарова
Сибирский федеральный университет; Федеральный исследовательский центр “Красноярский научный центр Сибирского отделения Российской академии наук”
														Email: sfu-unesco@mail.ru
				                					                																			                												                								Россия, 660041, Красноярск, Свободный пр., 79; Россия, 660036, Красноярск, Академгородок ул., 50						
М. В. Брунгардт
Сибирский федеральный университет; Федеральный исследовательский центр “Красноярский научный центр Сибирского отделения Российской академии наук”
							Автор, ответственный за переписку.
							Email: sfu-unesco@mail.ru
				                					                																			                												                								Россия, 660041, Красноярск, Свободный пр., 79; Россия, 660036, Красноярск, Академгородок ул., 50						
Список литературы
- Koteeswari P., Sagadevan S., Fatimah I., Sibhatu A.K., Abd Razak S.I., Leonard E., Soga T. Green Synthesis and Characterization of Copper Oxide Nanoparticles and Their Photocatalytic Activity // Inorg. Chem. Commun. 2022. V. 144. P. 109851. https://doi.org/10.1016/j.inoche.2022.109851
- Angı A., Sanlı D., Erkey C., Birer Ö. Catalytic Activity of Copper(II) Oxide Prepared via Ultrasound Assisted Fenton-like Reaction // Ultrason. Sonochem. 2014. V. 21. № 2. P. 854–859. https://doi.org/10.1016/j.ultsonch.2013.09.006
- Senthilkumar V., Kim Y.S., Chandrasekaran S., Rajagopalan B., Kim E.J., Chung J.S. Comparative Supercapacitance Performance of CuO Nanostructures for Energy Storage Device Applications // RSC Adv. 2015. V. 5. P. 20545–20553. https://doi.org/10.1039/C5RA00035A
- Федоров Л.Ю., Ушаков А.В., Карпов И.В. Синтез и хеморезистивная чувствительность к водороду наноструктурированных пленок CuO // Письма в ЖТФ. 2022. Т. 48. № 14. С. 18–22. https://doi.org/10.21883/PJTF.2022.14.52864.19197
- Lillo-Ramiro J., Guerrero-Villalba J.M., Mota-González M.L., Aguirre-Tostado F.S., Gutiérrez-Heredia G., Mejía-Silva I., Carrillo-Castillo A. Optical and Microstructural Characteristics of CuO Thin Films by Sol Gel Process and Introducing in Non-Enzymatic Glucose Biosensor Applications // Optik. 2021. V. 229. P. 166238. https://doi.org/10.1016/j.ijleo.2020.166238
- Zhang Q., Zhang K., Xu D., Yang G., Huang H., Nie F., Liu C., Yang S. CuO Nanostructures: Synthesis, Characterization, Growth Mechanisms, Fundamental Properties, and Applications // Prog. Mater. Sci. 2014. V. 60. P. 208–337. https://doi.org/10.1016/j.pmatsci.2013.09.003
- Zoolfakar A.S., Rani R.A., Morfa A.J., O’Mullaned A.P., Kalantar-Zadeh K. Nanostructured Copper Oxide Semiconductors: a Perspective on Materials, Synthesis Methods and Applications // J. Mater. Chem. C. 2014. V. 2. P. 5247–5270. https://doi.org/10.1039/C4TC00345D
- El-Trass A., ElShamy H., El-Mehasseb I., El-Kemary M. CuO Nanoparticles: Synthesis, Characterization, Optical Properties and Interaction with Amino Acids // Appl. Surf. Sci. 2012. V. 258. P. 2997–3001. https://doi.org/10.1016/j.apsusc.2011.11.025
- Rahmatolahzadeh R., Aliabadi M., Motevalli K. Cu and CuO Nanostructures: Facile Hydrothermal Synthesis, Characterization and Photocatalytic Activity Using New Starting Reagents // J. Mater. Sci. – Mater. Electron. 2017. V. 28. P. 148–156. https://doi.org/10.1007/s10854-016-5504-3
- Сивков А.А., Назаренко О.Б., Ивашутенко А.С., Сайгаш А.С., Степанов К.И. Плазмодинамический синтез ультрадисперсных порошков на основе оксида меди // Изв. вузов. Физика. 2014. Т. 57. № 12–3. С. 309–314.
- Гончарова Д.А., Лапин И.Н., Савельев Е.С., Светличный В.А. Структура и свойства наночастиц, полученных методом лазерной абляции объемных мишеней металлической меди в воде и этаноле // Изв. вузов. Физика. 2017. Т. 60. № 7. С. 98–106.
- Oruç Ç., Altındal A. Structural and Dielectric Properties of CuO Nanoparticles // Ceram. Int. 2017. V. 43. № 14. P. 10708–10714. https://doi.org/10.1016/j.ceramint.2017.05.006
- Makhlouf S.A., Kassem M.A., Abdel-Rahim M.A. Particle Size-Dependent Electrical Properties of Nanocrystalline NiO // J. Mater. Sci. 2009. V. 44. № 13. P. 3438–3444. https://doi.org/10.1007/s10853-009-3457-0
- Карпов И.В., Ушаков А.В., Федоров Л.Ю., Гончарова Е.А., Брунгардт М.В. Исследование влияния размерных и поверхностных эффектов на электрофизические свойства наночастиц NiO, полученных в вакуумно-дуговом разряде // Неорган. материалы. 2022. Т. 58. № 10. С. 1079–1086. https://doi.org/10.31857/S0002337X22100074
- Карпов И.В., Ушаков А.В., Лепешев А.А., Федоров Л.Ю. Плазмохимический реактор на основе импульсного дугового разряда низкого давления для синтеза нанопорошков // Журн. техн. физики. 2017. Т. 87. № 1. С. 140–145. https://doi.org/10.21883/JTF.2017.01.1851
- Ушаков А.В., Карпов И.В., Федоров Л.Ю., Гончарова Е.А., Брунгардт М.В., Дёмин В.Г. Исследование влияния парциального давления кислорода на фазовый состав наночастиц оксида меди вакуумно-дугового синтеза // ЖТФ. 2021. Т. 91. № 12. С. 1986–1991. https://doi.org/10.21883/JTF.2021.12.51764.157-21
- Кожанов А.Е., Никорич А.В., Рябова Л.И., Хохлов Д.Р. Проводимость твердых растворов Pb1–xSnxTe(In) в переменном электрическом поле // Физика и техника полупроводников. 2006. Т. 40. № 9. С. 1047–1050.
- Deuermeier J., Gassmann J., Brotz J., Kleina A. Reactive Magnetron Sputtering of Cu2O: Dependence on Oxygen Pressure and Interface Formation with Indium Tin Oxide // J. Appl. Phys. 2011. V. 109. P. 113704. https://doi.org/10.1063/1.3592981
- Chen J.W., Rao G.N. CuO Nanoparticles as a Room Temperature Dilute Magnetic Giant Dielectric Material // IEEE Trans. Magn. 2011. V. 47. № 10. P. 3772–3775. https://doi.org/10.1109/TMAG.2011.2149505
- Psarras G.C. Hopping Conductivity in Polymer Matrix–Metal Particles Composites // Composites. Part A. 2006. V. 37. № 10. P. 1545–1553. https://doi.org/10.1016/j.compositesa.2005.11.004
- Koshy J., Soosen S.M., Chandran A., George K.C. Correlated Barrier Hopping of CuO Nanoparticles // J. Semicond. 2015. V. 36. P. 122003. https://doi.org/10.1088/1674-4926/36/12/122003
- Biju V., Abdul Khadar M. AC Conductivity of Nanostructured Nickel Oxide // J Mater. Sci. 2001. V. 36. P. 5779–5787. https://doi.org/10.1023/A:1012995703754
Дополнительные файлы
 
				
			 
						 
						 
						 
					 
						 
									

 
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail 








