Maximum flows characteristics of a multiuser communication network under a change in the capacity of cuts

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The maximum indicators of the functionality of a multiuser communication system are investigated under a change in the capacity of network edges. Based on the transmission routes of the maximum flows of the same type, the minimum cuts of the network are determined. The influence of changes in the capacity of the cut edges on the maximum allowable internodal flows under monopoly control modes is studied. The maximum values of the internodal flows correspond to the corners of the set of allowable flows satisfying the constraints of the model. A convex combination of vectors corresponding to the corners is used to estimate the relative changes in network characteristics during deformation of the set of feasible flows. Multi-criteria guaranteed estimates of the maximum feasible deviations from the reference indicators of the network functioning are formulated. Summary diagrams for networks with various structural features are provided.

Texto integral

Acesso é fechado

Sobre autores

Yu. Malashenko

Federal Research Center “Computer Science and Control” of the RAS

Email: irina-nazar@yandex.ru
Rússia, Moscow

I. Nazarova

Federal Research Center “Computer Science and Control” of the RAS

Autor responsável pela correspondência
Email: irina-nazar@yandex.ru
Rússia, Moscow

Bibliografia

  1. Пехтерев С.В., Макаренко С.И., Ковальский А.А. Описательная модель системы спутниковой связи Starlink // Системы управления, связи и безопасности. 2022. № 4. С. 190-255.
  2. Малашенко Ю.Е., Назарова И.А. Сравнительный анализ показателей функционирования сети при повреждении узлов // Информатика и ее применения. 2024. Т. 18. Вып. 3. С. 52–60.
  3. Гермейер Ю.Б. Введение в теорию исследования операций. М.: Наука, 1971.
  4. Данскин Дж.М. Теория максимина и ее приложение к задачам распределения вооружения. М.: Сов. радио, 1970.
  5. Йенсен П., Барнес Д. Потоковое программирование. М.: Радио и связь, 1984.
  6. Лотов А.В., Поспелова И. И. Многокритериальные задачи принятия решений. М.: Макс Пресс, 2008.
  7. Ogryczak W., Luss H., Pioro M., Nace D., Tomaszewski A. Fair Optimization and Networks: a survey // J. Appl. Math. 2014. V. 25. P. 1–25.
  8. Фрэнк Г., Фриш М. Сети, связь и потоки. М.: Связь, 1978.
  9. Кормен Т.Х., Лейзерсон Ч.И., Ривест Р.Л. и др. Алгоритмы: построение и анализ. 2-е изд. М.: Вильямс, 2010.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Basic network.

Baixar (88KB)
3. Fig. 2. Ring network.

Baixar (97KB)
4. Fig. 3. Reduction in throughput in the core network.

Baixar (90KB)
5. Fig. 4. Reduction of throughput in a ring network.

Baixar (90KB)
6. Fig. 5. System response to increased throughput in the core network.

Baixar (90KB)
7. Fig. 6. System response to increasing throughput in a ring network.

Baixar (80KB)
8. Fig. 7. Reduction in throughput in the core network.

Baixar (81KB)
9. Fig. 8. Increasing throughput in the core network.

Baixar (78KB)
10. Fig. 9. Reduction of throughput in a ring network.

Baixar (83KB)
11. Fig. 10. Increasing throughput in a ring network.

Baixar (100KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025