SPECTROSCOPIC BINARY CEPHEID AU PEG IN GAIA DR3 EPOCH: THE ELLIPSOIDALITY EFFECT, MASS AND EVOLUTIONARY STATUS
- 作者: Rastorguev A.S.1,2, Zabolotskikh M.V.2, Gorynya N.A.2,3
-
隶属关系:
- Lomonosov Moscow State University, Faculty of Physics
- Lomonosov Moscow State University, Sternberg Astronomcal Institute
- Institute of Astronomy of the RAS
- 期: 卷 102, 编号 4 (2025)
- 页面: 317-330
- 栏目: Articles
- URL: https://ruspoj.com/0004-6299/article/view/686614
- DOI: https://doi.org/10.31857/S0004629925040061
- EDN: https://elibrary.ru/FYHMKU
- ID: 686614
如何引用文章
详细
The physical parameters and evolutionary status of the spectroscopic binary Cepheid AU Peg, usually classified as a BL Her variable, are revised. Taking into account previously unpublished radial velocity measurements made with the correlation spectrometer, the parameters of the relative orbit of the system are refined. Based on 74 new radial velocity measurements made in the period 𝐽𝐷 2453930 − 2459490 almost simultaneously with the photometric observations of Gaia DR3 (44 brightness measurements in the period 𝐽𝐷 2456962 − 2457877), the parameters of to orbit and the radius of AU Peg is determined by the pulsating photosphere method to be ((16.0 ± 0.6) 𝑅⊙, with the amplitude of radius variations is about 0.7 𝑅⊙. For the first time, brightness variations at the level of 2% in the 𝐺 band with a half orbital period were found for spectroscopic binary Cepheids, the phases of which are clearly synchronized with the phases of the orbital motion (conjunctions and quadratures) and can be interpreted as a manifestation of the effect of the ellipsoidality of the primary component, filling the Roche sphere by 60–70%. The orbit of the binary system, calculated on the basis of astrometric data from Gaia DR3 and radial velocities, is bounded by a torus with a thickness of S𝑧S ⩽ 300 pc and inner and outer radii equal to 7.2 and 8.8 kpc, respectively, while the vertical velocity lies within S𝑉𝑧S ⩽ 18 km/s. Based on its kinematics and abundance of heavy elements, AU Peg can certainly be classified as a representative of the typical population of a disk of moderate (∼ 1–3 billion years) age, which completely excludes its classification as a BL Her variable. The Cepheid, whose current mass, as follows from the magnitude of the ellipsoidality effect, does not exceed ∼ (0.85 ± 0.05) 𝑀⊙, is at the stage after the mass exchange in the subgiant phase with a companion — a main sequence star, which is currently significantly more massive than the Cepheid.
作者简介
A. Rastorguev
Lomonosov Moscow State University, Faculty of Physics; Lomonosov Moscow State University, Sternberg Astronomcal Institute
Email: alex.rastorguev@gmail.com
Moscow, Russia; Moscow, Russia
M. Zabolotskikh
Lomonosov Moscow State University, Sternberg Astronomcal InstituteMoscow, Russia
N. Gorynya
Lomonosov Moscow State University, Sternberg Astronomcal Institute; Institute of Astronomy of the RASMoscow, Russia; Moscow, Russia
参考
- N.R. Evans, L. Berdnikov, N. Gorynya, A. Rastorguev, and J. Eaton, Astron. J. 142, 87 (2011).
- N.R. Evans, C. Proffitt, K.G. Carpenter, E.M. Winston, G.V. Kober, H.M. G?unther, N. Gorynya, A. Rastorguev, and L. Inno, Astrophys. J. 866, 30 (2018), 1808.10472.
- A.A. Tokovinin, Soviet Astronomy 31, 98 (1987).
- N.A. Gorynya, T.R. Irsmambetova, A.S. Rastorgouev, and N.N. Samus, Soviet Astronomy Letters 18, 316 (1992).
- N.A. Gorynya, N.N. Samus’, A.S. Rastorguev, and M.E. Sachkov, Astronomy Letters 22, 175 (1996).
- N.A. Gorynya, N.N. Samus’, M.E. Sachkov, A.S. Rastorguev, E.V. Glushkova, and S.V. Antipin, Astronomy Letters 24, 815 (1998).
- C. Hoffmeister, Astronomische Nachrichten 240, 193 (1930).
- O.J. Eggen, S.C.B. Gascoigne, and E.J. Burr, Monthly Not. Roy. Astron. Soc. 117, 406 (1957).
- I. Soszynski, A. Udalski, M.K. Szymanski, L. Wyrzykowski, K. Ulaczyk, R. Poleski, P. Pietrukowicz, S. Kozlowski, D.M. Skowron, J. Skowron, et al., Acta Astron. 67, 103 (2017), 1706.09452.
- I. Soszynnski, A. Udalski, M.K. Szymanski, L. Wyrzykowski, K. Ulaczyk, R. Poleski, P. Pietrukowicz, S. Kozlowski, D.M. Skowron, J. Skowron, et al., Acta Astron. 67, 297 (2017), 1712.01307.
- I. Soszynski, A. Udalski, M.K. Szymanski, L. Wyrzykowski, K. Ulaczyk, R. Poleski, P. Pietrukowicz, S. Kozlowski, D. Skowron, J. Skowron, et al., Acta Astron. 68, 89 (2018), 1807.00008.
- A. Udalski, M.K. Szymanski, and G. Szymanski, Acta Astron. 65, 1 (2015), 1504.05966.
- M. Marconi and M. Di Criscienzo, Astron. and Astrophys. 467, 223 (2007), astro-ph/0701256.
- S. Das, S.M. Kanbur, R. Smolec, A. Bhardwaj, H.P. Singh, and M. Rejkuba, Monthly Not. Roy. Astron. Soc. 501, 875 (2021), 2011.11626.
- S. Das, L. Molnar, S.M. Kanbur, M. Joyce, A. Bhardwaj, H.P. Singh, M. Marconi, V. Ripepi, and R. Smolec, Astron. and Astrophys. 684, A170 (2024), 2401.11869.
- H. Harris, E.W. Olszewski, and G. Wallerstein, Astron. J. 84, 1598 (1979).
- C.W. McAlary and D.L. Welch, Astron. J. 91, 1209 (1986).
- H.C. Harris, E.W. Olszewski, and G. Wallerstein, Astron. J. 89, 119 (1984).
- J. Vinko, L. Szabados, and K. Szatmary, Astron. and Astrophys. 279, 410 (1993).
- C.D. Laney, in IAU Colloq. 155: Astrophysical Applications of Stellar Pulsation, edited by R.S. Stobie and P.A. Whitelock (1995), vol. 83 of Astronomical Society of the Pacific Conference Series, p. 367.
- Z. Balog, J. Vinko, and G. Kaszas, Astron. J. 113, 1833 (1997).
- G. Csornyei and L. Szabados, Astrophys. and Sp. Sci. 364, 151 (2019), 1909.01255.
- M.E. Sachkov, A.S. Rastorguev, N.N. Samus’, and N.A. Gorynya, Astronomy Letters 24, 377 (1998).
- M. Jurkovic, L. Szabados, J. Vinko, and B. Csak, Astronomische Nachrichten 328, 837 (2007), 0705.2389.
- Gaia Collaboration, T. Prusti, J.H.J. de Bruijne, A.G.A. Brown, A. Vallenari, C. Babusiaux, C.A.L. Bailer-Jones, U. Bastian, M. Biermann, D.W. Evans, et al., Astron. and Astrophys. 595, A1 (2016), 1609.04153.
- Gaia Collaboration, A.G.A. Brown, A. Vallenari, T. Prusti, J.H.J. de Bruijne, C. Babusiaux, M. Biermann, O.L. Creevey, D.W. Evans, L. Eyer, et al., Astron. and Astrophys. 649, A1 (2021), 2012.01533.
- Gaia Collaboration, A. Vallenari, A.G.A. Brown, T. Prusti, J.H.J. de Bruijne, F. Arenou, C. Babusiaux, M. Biermann, O.L. Creevey, C. Ducourant, et al., Astron. and Astrophys. 674, A1 (2023), 2208.00211.
- C.A.L. Bailer-Jones, J. Rybizki, M. Fouesneau, M. Demleitner, and R. Andrae, Astron. J. 161, 147 (2021), 2012.05220.
- A.C. Robin, C. Reyle, S. Derriere, and S. Picaud, Astron. and Astrophys. 409, 523 (2003).
- A.C. Robin, C. Reyle, J. Fliri, M. Czekaj, C.P. Robert, and A.M.M. Martins, Astron. and Astrophys. 569, A13 (2014), 1406.5384.
- O. Bienayme, A.C. Robin, and B. Famaey, Astron. and Astrophys. 581, A123 (2015), 1508.01682.
- J.G. Fernandez-Trincado, D. Minniti, E.R. Garro, and S. Villanova, Astron. and Astrophys. 657, A84 (2022), 2111.04151.
- Y. Tarricq, C. Soubiran, L. Casamiquela, T. Cantat-Gaudin, L. Chemin, F. Anders, T. Antoja, M. Romero-Gomez, F. Figueras, C. Jordi, et al., Astron. and Astrophys. 647, A19 (2021), 2012.04017.
- J. Holmberg, B. Nordstrom, and J. Andersen, Astron. and Astrophys. 501, 941 (2009), 0811.3982.
- T. Maas, S. Giridhar, and D.L. Lambert, Astrophys. J. 666, 378 (2007), 0706.2029.
- V. Kovtyukh, I. Yegorova, S. Andrievsky, S. Korotin, I. Saviane, B. Lemasle, F. Chekhonadskikh, and S. Belik, Monthly Not. Roy. Astron. Soc. 477, 2276 (2018).
- A.L. Luo, Y.H. Zhao, G. Zhao, and et al., VizieR Online Data Catalog: LAMOST DR7 catalogs (Luo+, 2019), VizieR On-line Data Catalog: V/156. Originally published in: 2019RAA..in.prep..L (2022).
- R.E. Luck and D.L. Lambert, Astron. J. 142, 136 (2011), 1108.1947.
- M. Meakes, G. Wallerstein, and J.F. Opalko, Astron. J. 101, 1795 (1991).
- Online Stilism 3D map, Structuring by inversion the local interstellar medium, https://stilism.obspm.fr/ (last updated March 19, 2018).
- R. Lallement, J.L. Vergely, B. Valette, L. Puspitarini, L. Eyer, and L. Casagrande, Astron. and Astrophys. 561, A91 (2014), 1309.6100.
- L. Capitanio, R. Lallement, J.L. Vergely, M. Elyajouri, and A. Monreal-Ibero, Astron. and Astrophys. 606, A65 (2017), 1706.07711.
- R. Lallement, C. Babusiaux, J.L. Vergely, D. Katz, F. Arenou, B. Valette, C. Hottier, and L. Capitanio, Astron. and Astrophys. 625, A135 (2019), 1902.04116.
- A.A. Henden, Monthly Not. Roy. Astron. Soc. 192, 621 (1980).
- T.J. Moffett and T.G. Barnes III, Astrophys. J. Supp. Ser. 55, 389 (1984).
- L. Eyer, M. Audard, B. Holl, L. Rimoldini, M.I. Carnerero, G. Clementini, J. De Ridder, E. Distefano, D.W. Evans, P. Gavras, et al., Astron. and Astrophys. 674, A13 (2023), 2206.06416.
- A.S. Rastorguev, M.V. Zabolotskikh, and N.A. Gorynya, Astrophysical Bulletin 79, 650 (2024), 1011.3305.
- L.A. Balona, Monthly Not. Roy. Astron. Soc. 178, 231 (1977).
- A.S. Rastorguev, M.V. Zabolotskikh, Y.A. Lazovik, N.A. Gorynya, and L.N. Berdnikov, Astrophysical Bulletin 77, 144 (2022).
- T.G. Barnes and D.S. Evans, Monthly Not. Roy. Astron. Soc. 174, 489 (1976).
- A.S. Rastorguev and A.K. Dambis, Astrophysical Bulletin 66, 47 (2011), 1011.3305.
- A.M. Cherepashchuk, Tesnye Dvoynye Zvezdy, Vol. I (2013).
- O. Demircan and G. Kahraman, Astrophys. and Sp. Sci. 181, 313 (1991).
- S. Wang and X. Chen, Astrophys. J. 877, 116 (2019), 1904.04575.
- E.E. Mamajek, A modern mean dwarf stellar color and effective temperature sequence, https://www.pas.rochester.edu/~emamajek/EEM_dwarf_UBVIJHK_colors_Teff.txt (last updated April 16, 2022).
- P.P. Eggleton, Astrophys. J. 268, 368 (1983).
- M.S. Zverev, B.V. Kukarkin, D.Y. Martynov, P.P. Parenago, N.F. Florya, and V.P. Tsesevich, Variable stars, Vol. III (1947).
- A. Dotter, Astrophys. J. Supp. Ser. 222, 8 (2016), 1601.05144.
- I. Barnes, G. Thomas III, T.J. Moffett, and M.H. Slovak, Astrophys. J. Supp. Ser. 66, 43 (1988).
- J. Vinko, N. Remage Evans, L.L. Kiss, and L. Szabados, Monthly Not. Roy. Astron. Soc. 296, 824 (1998).
补充文件
