Триимоноэция у цветковых растений

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Популяции тримоноэцичных растений состоят из особей, образующих одновременно тычиночные, пестичные и обоеполые цветки. Тримоноэция очень редка у покрытосеменных растений, и сведения о ней крайне немногочисленны. На основе литературных данных и собственных исследований составлен список тримоноэцичных растений в рамках мировой флоры, который включает 73 вида из 44 родов, относящихся к 29 семействам и 19 порядкам цветковых растений. Тримоноэция встречается у 6.9% семейств, 0.3% родов и 0.025% видов покрытосеменных. Тримоноэцичные виды не выявлены в группе базальных покрытосеменных и магнолиид. Самая высокая доля тримоноэцичных видов характерна для однодольных растений: 20.0% семейств, 0.7% родов и 0.05% видов. Подавляющее большинство (80.3% всех видов) тримоноэцичных растений относятся к группам Superrosids (27 видов) и Superasterids (32 вида). Выявлено пять ведущих семейств по числу тримоноэцичных видов: Apiaceae (16 видов из 2 родов), Amaranthaceae (7 видов из 3 родов), Cleomaceae (6 видов из 2 родов), Commelinaceae (5 видов из 1 рода) и Poaceae (4 вида из 4 родов). Чуть меньше половины всех тримоноэцичных видов встречается в пяти родах: Heracleum L. (13 видов), Aneilema R.Br. (5), Cleome L. (5), Amaranthus L. (4), Lomatium Raf. (3). Проанализирована связь тримоноэции с такими биологическими и экологическими характеристиками, как жизненная форма, способ опыления, окраска околоцветника, консистенция околоплодника, наличие однодомных родственных таксонов, широтное расположение, распространение по флористическим фитохорионам. Обсуждаются размерные различия околоцветников трех типов цветков, фертильность пыльцы и пыльцевая продуктивность обоеполых и тычиночных цветков, расположение и соотношение обоеполых, тычиночных и пестичных цветков у особей, а также механизмы возникновения и эволюции тримоноэции у цветковых растений.

Об авторах

В. Н. Годин

Центральный сибирский ботанический сад СО РАН

Автор, ответственный за переписку.
Email: vn.godin@mpgu.su
ул. Золотодовинская, 101, Новосибирск, 630090, Россия

Список литературы

  1. Anton A.M., Connor H.E., Astegian M.E. 1998. Taxonomy and floral biology of Scleropogon (Eragrostideae: Grami- neae). – Plant Species Biol. 13(1): 35–50. https://doi.org/10.1111/j.1442-1984.1998.tb00246.x
  2. Aona L.Y.S, Amaral M.C.E. 2003. Halogaraceae. – In: Wanderley M.G.L., Shepherd G.J., Melhem T.S., Giulietti A.M., Kirizawa M. (eds.). Flora Fanerogâmica do Estado de São Paulo. Vol. 3. São Paulo. P. 105–108.
  3. Bannikova V.A. 1976. Morphology of panicle and peculiarities of flowering of Zizania latifolia (Griseb.) Stapf. – Bot. Zhurn. 61(7): 990–993 (In Russ.).
  4. Belyaeva I.V., Epanchintseva O.V., McGinn K., Govaerts R.H.A. 2021. The application of scientific names to plants: Salix alba L. f. tristis Gaudin and related taxa (Salicaceae). – Skvortsovia: International Journal of Salicology and Plant Biology. 7(3): 15–23. https://doi.org/10.51776/2309-6500_2021_7_3_15
  5. Billard E., Serrão E.A., Pearson G.A., Engel C.R., Destombe C., Valero M. 2005. Analysis of sexual phenotype and prezygotic fertility in natural populations of Fucus spiralis, F. vesiculosus (Fucaceae, Phaeophyceae) and their putative hybrids. – Eur. J. Phycol. 40(4): 397–407. https://doi.org/10.1080/09670260500334354
  6. Bobrov A.V., Melikian A.P., Romanov M.S. 2009. Morphogenesis of fruits of Magnoliophyta. Moscow. 400 p. (In Russ.).
  7. Bullock S.H. 1985. Breeding systems in the flora of a tropical deciduous forest in Mexico. – Biotropica. 17(4): 287–301. https://doi.org/10.2307/2388591
  8. Burrows G.E., Tyrl R.J. 2013. Toxic plants of North America. 1392 p. https://doi.org/10.1002/9781118413425
  9. Cardoso J.C.F., Viana M.L., Matias R., Furtado M.T. Caetano A.P.S., Consolaro H., Brito V.L.G. 2018. Towards a unified terminology for angiosperm reproductive systems. – Acta Bot. Bras. 32(3): 329– 348. https://doi.org/10.1590/0102-33062018abb0124
  10. Cardoso-Gustavson P., Demarco D., Carmello-Guerreiro S.M. 2011. Evidence of trimonoecy in Phyllanthaceae: Phyllanthus acidus. – Plant Syst. Evol. 296(3/4): 283–286. https://doi.org/10.1007/s00606-011-0494-3
  11. Charlesworth B., Charlesworth D. 1978. A model for the evolution of dioecy and gynodioecy. – Am. Nat. 112(998): 975–997. https://doi.org/10.1086/283342
  12. Chinchilla I.F. 2020. A new tree species of Cupania (Sapindoideae, Sapindaceae) from Quepos, Costa Rica. – Phytotaxa 475(3): 178–186. https://doi.org/10.11646/phytotaxa.475.3.2
  13. Cole T.C.H., Hilger H.H., Stevens P.F. 2019. Angiosperm Phylogeny Poster (APP) – Flowering plant systematics, 2019. PeerJPreprints, 7e2320v6. https://doi.org/10.7287/peerj.preprints.2320v6
  14. Croat T.B. 1978. Flora of Barro Colorado Island. Stanford University Press. 943 p.
  15. Cruden R.W., Lloyd R.M. 1995. Embryophytes have equi- valent sexual phenotypes and breeding systems: why not a common terminology to describe then? – Am. J. Bot. 82(6): 816–825. https://doi.org/10.1002/j.1537-2197.1995.tb15694.x
  16. Darrach M.E. 2014. Lomatium knokei (Apiaceae), a new, narrowly endemic species from Washington State. – Phytoneuron. 2014–108: 1–12.
  17. Darrach M.E. 2018. Lomatium roneorum (Apiaceae), a new species from the east slopes of the Cascade Mountains, Washington state. – Phytoneuron. 2018–78: 1–12.
  18. Darrach M.E., Hinchliff C.E. 2014. Lomatium tarantuloides (Apiaceae), a new narrowly endemic species from northeast Oregon. – Phytoneuron. 2014–27: 1–8.
  19. Darwin C. 1877. The different forms of flowers on plants of the same species. London. 352 p.
  20. Dasumiati, Miftahudin, Triadiati T., Hartana A. 2017. Sex types in flowering of Jatropha curcas. – Biodiversitas. 18(1): 442–446. https://doi.org/10.13057/biodiv/d180158
  21. Davidse G., Ellis R.P. 1984. Steyermarkochloa unifolia, a new genus from Venezuela and Colombia (Poaceae: Arundinoideae: Steyermarkochloeae). – Ann. Missouri Bot. Gard. 71(4): 994–1012. https://doi.org/10.2307/2399237
  22. Dempster L.T. 1990. The genus Galium (Rubiaceae) in South America. IV. – Allertonia. 5(3): 283–345.
  23. Demyanova E.I. 2000. Monoecy. – In: Embryology in flowering plants. Terminology and concepts. Vol. 3. Reproductive systems. Saint-Petersburg. P. 75–78 (In Russ.).
  24. Demyanova E.I. 2011. The spectrum of sexual types and forms in the local floras of the Urals (Cis- and Trans-Urals). – Bot. Zhurn. 96(10): 1297–1315 (In Russ.). https://doi.org/10.1134/S1234567811100016
  25. Dommée B., Denelle N., Rioux J.-A. 1984. Proportions des sexes dans deux populations françaises de Thymelaea hirsuta (L.) Endl. – Bull. Soc. Bot. France. Let. Bot. 131(3): 201–205. https://doi.org/10.1080/01811797.1984.10824631
  26. Dransfield J., Uhl N.W., Asmussen C.B., Baker W.J., Harley M.M., Lewis C.E. 2008. Genera Palmarum. The evolution and classification of palms. International Palm Society. 744 p.
  27. Endress P.K. 1970. Die Infloreszenzen der apetalen Hamame- lidaceen, ihre grundsatzliche morphologische und systematische Bedeutung. – Bot. Jahrb. Syst. 90: 1–54.
  28. Errera L., Gevaert G. 1878. Sur la structure et les modes de fécondation des fleurs et en particulier sur l’hétérostylie du Primula elatior. – Bull. Soc. roy. bot. Belg. 17(1): 38–248.
  29. Faden R.B. 1991. The morphology and taxonomy of Aneilema R. Brown (Commelinaceae). – Smithsonian Contributions to Botany. 76: 1–166. https://doi.org/10.5479/si.0081024X.76
  30. FitzJohn R.G., Pennell M.W., Zanne A.E., Stevens P.F., Tank D.C., Cornwell W.K. 2014. How much of the world is woody? – J. Ecol. 102(5): 1266–1272. https://doi.org/10.1111/1365-2745.12260
  31. Fleming T.H. 1991. Fruiting plant-frugivore mutualism: the evolutionary theater and the ecological play. – In: Plant-animal interactions: Evolutionary ecology in tropical and temperate regions. New York. P. 119–144.
  32. Fox J. 1985. Incidence of dioecy in relation to growth form, pollination and dispersal. – Oecologia. 67(2): 244–249. https://doi.org/10.1007/BF00384293
  33. Frodin D.G. 2001. Guide to standard floras of the world. An annotated, geographically arranged systematic bibliography of the principal floras, enumerations, checklists and chorological atlases of different areas. Cambridge University Press. 1126 p.
  34. Godin V.N. 2007. Sex differentiation in plants. Terms and notions. – Zhurn. obsh. biol. 68(2): 98–108 (In Russ.).
  35. Godin V.N. 2017. Sexual forms and their ecological correlates of flowering plants in Siberia. – Russ. J. Ecol. 48(5): 433–439. https://doi.org/10.1134/S1067413617050058
  36. Godin V.N. 2019. Distribution of gynodioecy in APG IV system. – Bot. Zhurn. 104(5): 669–683 (In Russ.). https://doi.org/10.1134/S0006813619050053
  37. Godin V.N. 2020. Distrbution of gynodioecy in flowering plants. – Bot. Zhurn. 105(3): 236–252 (In Russ.). https://doi.org/10.31857/S0006813620030023
  38. Godin V.N. 2022. Trioecy in flowering plants. – Dokl. Biol. Sci. 507(1): 301–311. https://doi.org/10.1134/S0012496622060023
  39. Godin V.N. 2025. Trimonoecy in Galium rivale (Rubiaceae). – Bot. Zhurn. 110(2): 150–158 (In Russ.). https://doi.org/10.31857/S0006813625020037
  40. Godin V.N., Ialamova J.I. 2020. Sexual types of flowers morphology in Heracleum sibiricum (Apiaceae). – BIO Web of Conferences. 24: 00025. https://doi.org/10.1051/bioconf/20202400025
  41. Heywood V.H. 1976. Phalacrocarpum Willk. – Tutin T.G., Heywood V.H., Burges N.A., Moore D.M., Valentine D.H., Walters S.M., Webb D.A. (eds.). Flora Europaea. Vol. 4. Plantaginaceae to Compositae (and Rubiaceae). Cambridge. P. 172.
  42. Jong T.J., Shmida A., Thuijsman F. 2008. Sex allocation in plants and the evolution of monoecy. – Evol. Ecol. Res. 10(8): 1087–1109.
  43. Kier G., Mutke J., Dinerstein E., Ricketts T.H., Küper W., Kreft H., Barthlott W. 2005. Global patterns of plant diversity and floristic knowledge. – J. Biogeogr. 32(7): 1107–1116. https://doi.org/10.1111/j.1365-2699.2005.01272.x
  44. Kirchner E.O.O. 1888. Flora von Stuttgart und Umgebung. Stuttgart. 767 p.
  45. Knuth P. 1898. Handbuch der Blütenbiologie. Bd. II. T. I. Leipzig. 697 S.
  46. Knuth P. 1899. Handbuch der Blütenbiologie. Bd. II. T. II. Leipzig. 705 S.
  47. Knuth P. 1904. Handbuch der Blütenbiologie. Bd. III. T. I. Leipzig. 570 S.
  48. Lenz L.W. 1995. A new species of Hechtia (Bromeliaceae, Pitcairnoideae) from the Cape Region, Baja California Sur, Mexico. – Aliso. 14(1): 59–61. https://doi.org/10.5642/aliso.19951401.06
  49. Leroy J.-F. 1952. Fam. 54. Ulmacées. – In: Flore de Madagascar et des Comores: plantes vasculaires. Paris. 18 p.
  50. Les D.H. 2017. Aquatic dicotyledons of North America: eco- logy, life history, and systematics. 1350 p. https://doi.org/10.1201/9781315118116
  51. Les D.H. 2020. Aquatic monocotyledons of North America: ecology, life history, and systematics. 568 p. https://doi.org/10.1201/b22197
  52. Linnæus C. 1735. Systema naturæ, sive regna tria naturæ systematice proposita per classes, ordines, genera, & species. Lugduni Batavorum. 12 p.
  53. Liogier A.H. 1985. Descriptive flora of Puerto Rico and adjacent islands. Vol. 1. Spermatophyta. Casuarinaceae to Connaraceae. Universidad De Puerto Rico. 352 p.
  54. Ma R., Xu Q., Gao Y., Peng D., Sun H., Song B. 2024. Patterns and drivers of plant sexual systems in the dry-hot valley region of southwestern China. – Plant Divers. 46(2): 158–168. https://doi.org/10.1016/j.pld.2023.07.010
  55. Mangla Y., Das K., Bali S., Ambreen H., Raina S., Tandon R., Goel S. 2019. Occurrence of subdioecy and scarcity of gender-specific markers reveal an ongoing transition to dioecy in Himalayan seabuckthorn (Hippophae rhamnoides ssp. turkestanica). – Heredity. 122(1): 120–132. https://doi.org/10.1038/s41437-018-0084-z
  56. Ollerton J., Johnson S., Hingston A. 2006. Geographical variation in diversity and specificity of pollination systems. – In: Plant – pollinator interactions: from specialization to generalization. Univ. Chicago Press. P. 283–308.
  57. Ollerton J., Winfree R., Tarrant S. 2011. How many flowering plants are pollinated by animals? – Oikos. 120(3): 321–326. https://doi.org/10.1111/j.1600-0706.2010.18644.x
  58. Pammel L.H. 1892. Notes on the pollination of Cucurbits. – Proc. Iowa Acad. Sci. 1(3): 79.
  59. Parma D.F., Souza K.F., Vaz M.G.M.V., Martins S.B., Araújo W.L., Zsögön A., Weber A.P.M., Schranz M.E., Nunes-Nesi A. 2023. Exploring the diversity of sexual systems and pollination in Brazilian Cleomaceae species. – Flora. 300: 152245. https://doi.org/10.1016/j.flora.2023.152245
  60. Pendleton R.L., Pendleton B.K., Harper K.T. 1989. Breeding systems of woody plant species in Utah. – In: Proceedings–symposium on shrub ecophysiology and biotechno- logy. Logan. P. 5–22.
  61. Pringle J.S. 2011. Five new species of South American Gentianella (Gentianaceae). – Novon. 21(1): 78–89. https://doi.org/10.3417/2008086
  62. Ramírez N. 2005. Plant sexual systems, dichogamy, and herkogamy in the Venezuelan Central Plain. – Flora. 200: 30–48. https://doi.org/10.1016/j.flora.2005.01.002
  63. Raunkiær C. 1934. The life forms of plants and statistical plant geography. Oxford. 632 p.
  64. Reyna J.M.M., Erives S.A. 2010. Bases morfológicas de cómo pudo haberse originado el dimorfismo sexual en el pasto Búfalo. – Revista Fitotecnia Mexicana. 33(4): 69–73.
  65. Rohwer J., Kubitzki K. 1984. Salix martiana, a regularly hermaphrodite willow. – Plant Syst. Evol. 144: 99–101. https://doi.org/10.1007/BF00986668
  66. Ross M.D. 1978. The evolution of gynodioecy and subdioecy. – Evolution. 32(1): 174–188. https://doi.org/10.1111/j.1558-5646.1978.tb01107.x
  67. Sazyperova I.F. 1984. Heracleum species of the USSR – new fodder plants. Leningrad. 223 p. (In Russ.).
  68. Serebryakov I.G. 1962. Ecological Morphology of Plants. Moscow. 378 p. (In Russ.).
  69. Small J.K. 1903. Flora of the southeastern United States; being descriptions of the seed-plants, ferns and fern-allies growing naturally in North Carolina, South Carolin, Georgia, Florida, Tennessee, Alabama, Mississippi, Arkansas, Louisiana and the Indian territory and in Oklahoma and Texas east of the one-hundredth meridian. New York. 1394 p.
  70. Sokal R.R., Rohlf F.J. 2012. Biometry: the principles and practice of statistics in biological research. 4th edition. New York. 937 p.
  71. Stout A.B. 1923. Alternation of sexes and intermittent production of fruit in the spider flower (Cleome spinosa). – Am. J. Bot. 10(2): 57–66. https://doi.org/10.2307/2435573
  72. Sun P., Nishiyama S., Li H., Mai Y., Han W., Suo Y., Liang C., Du H., Diao S., Wang Y., Yuan J., Zhang Y., Tao R., Li F., Fu J. 2023. Genetic insights into the dissolution of dioecy in diploid persimmon Diospyros oleifera Cheng. – BMC Plant Biol. 23(1): 606. https://doi.org/10.1186/s12870-023-04610-3
  73. Suo Z., Hashizume H. 1995. Flower-bearing habits, flowering, pollination, pollen production and pollen dispersal in Zelkova serrata Makino. – J. Japan. Forest. Soc. 77(4): 332–339 (In Jap.). https://doi.org/10.11519/jjfs1953.77.4_332
  74. Takhtajan A.L. 1986. The floristic regions of the world. UC Press, Berkeley. 522 p.
  75. Talamali A., Dutuit P., Le Thomas A., Gorenflot R. 2001. Polygamie chez Atriplex halimus L. (Chenopodiaceae). – C. R. Acad. Sci. Ser. III. Sciences de la vie. 324(2): 107–113. https://doi.org/10.1016/s0764-4469(00)01273-7
  76. Tamamshyan S.G. 1959. Genus 1470. Turczaninowia DC. – In: Flora of the USSR. Vol. 25. Moscow, Leningrad. P. 136–138 (In Russ.).
  77. Tanimoto T. 2007. Modification of sex expression in Sagittaria latifolia by the application of gibberellic acid and paclobutrazol. – J. Japan. Soc. Hort. Sci. 76(1): 47–53. https://doi.org/10.2503/jjshs.76.47
  78. Tkachenko K.G. 1989. Features of flowering and seed productivity of some species of Heracleum L. grown in the Leningrad region. – Rastitelnye resursy. 25(1): 52–61 (In Russ.).
  79. Torices R., Mendez M., Gómez J.M. 2011. Where do monomorphic sexual systems fit in the evolution of dioecy? Insights from the largest family of angiosperms. – New Phytol. 190(1): 234–248. https://doi.org/10.1111/j.1469-8137.2010.03609.x
  80. Trivedi R.N., Roy R.P. 1973. Cytogenetics of Momordica charantia and its polyploids. – Cytologia. 38(2): 317–325. https://doi.org/10.1508/cytologia.38.317
  81. Tseng Y.-H., Hsieh C.-F., Hu J.-M. 2008. Incidences and ecological correlates of dioecious angiosperms in Taiwan and its outlying Orchid Island. – Bot. Stud. 49(3): 261–276.
  82. Vary L.B., Gillen D.L., Randrianjanahary M., Lowry II P.P., Sakai A.K., Weller S.G. 2011. Dioecy, monoecy, and their ecological correlates in the littoral forest of Madagascar. – Biotropica. 43(5): 582–590. https://doi.org/10.1111/j.1744-7429.2010.00742.x
  83. Wang H.-F., Friedman C.R., Zhu Z.-X., Qin H.-N. 2009. Early reproductive developmental anatomy in Decaisnea (Lardizabalaceae) and its systematic implications. – Ann. Bot. 104(6): 1243–1253. https://doi.org/10.1093/aob/mcp232
  84. Wilson P.G. 1983. A taxonomic revision of the tribe Chenopodieae (Chenopodiaceae) in Australia. – Nuytsia: journal of the Western Australian Herbarium. 4(2): 135–262. https://doi.org/10.58828/nuy00074
  85. Xia F., Cheng F., Liu Z., Lin L., Wang H., Wang G. 2020. Sexual system and ecological links of flowering plants in Changbai Mountain. – Russ. J. Ecol. 51(4): 345–350. https://doi.org/10.1134/S1067413620040062
  86. Yonemori K., Sugiura A., Tanaka K., Kameda K. 1993. Floral ontogeny and sex determination in monoecious-type persimmons. – J. Am. Soc. Hort. Sci. 118(2): 293–297. https://doi.org/10.21273/JASHS.118.2.293

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025