Analysis of the structure and temperature distribution in a duraluminum alloy weld during friction stir welding

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Using complex theoretical and experimental methods of analysis, the influence of diffusion and deformation processes on the chemical composition and structure of the welded joint of plates made of D16T aluminum alloy under friction stir welding conditions was assessed. To reproduce the temperature conditions in the welding zone and assess the possible causes of changes in the structure and phase composition of the material in the weld area, methods of mathematical modeling of thermal processes were used. The resulting theoretical calculations were tested and confirmed using experimental methods of structural analysis (X-ray structural analysis and scanning electron microscopy) and microhardness measurements. A change in the content of silicon, copper and aluminum in the composition of the solid solution of the material under study was detected, as well as a change in the phase composition (a decrease in the amount of the Al12Fe3Si phase and the appearance of the AlCuFeMnSi phase), which is associated with mass transfer in the zone of the welded joint under friction stir welding conditions.

Толық мәтін

Рұқсат жабық

Авторлар туралы

N. Kazantseva

M.N. Miheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: kazantseva@imp.uran.ru
Ресей, Ekaterinburg, 620108

G. Shchapov

M.N. Miheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences

Email: kazantseva@imp.uran.ru
Ресей, Ekaterinburg, 620108

A. Tsarkov

Bauman Moscow State Technical University

Email: kazantseva@imp.uran.ru

Kaluga Branch

Ресей, Kaluga, Kaluga region, 248000

I. Ezhov

M.N. Miheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences

Email: kazantseva@imp.uran.ru
Ресей, Ekaterinburg, 620108

Әдебиет тізімі

  1. Ahmed M.M.Z., El-Sayed Seleman M.M., Fydrych D., Çam G. Friction Stir Welding of Aluminum in the Aerospace Industry: The Current Progress and State-of-the-Art Review // Materials. 2023. V. 16. P. 2971.
  2. Tang W., Guo X., Mcclure J.C., Murr L.E., Nunes A. Heat input and temperature distribution in friction stir welding // J. Mat. Proc. Mfgt. Sci. 1998. V. 7. P. 163–172.
  3. Mishra R.S., Rani Preety. Friction stir welding of aluminum alloy and the effect of parameters on weld quality – A Review // Intern. J. Research in Eng. Innovation. 2018. V. 2. № 3. P. 280–292.
  4. Муравьёв В.И., Бахматов П.В., Мелкоступов К.А. К вопросу актуальности исследования сварки трением с перемешиванием конструкций из высокопрочных алюминиевых сплавов // Ученые записки. 2010. № 11–1(2). С. 110–125.
  5. Наумов А.А., Ожегов М.А., Смелянский Р.И., Алали Алхалаф А., Поляков П.Ю. Физико-механические процессы соединения тонких листов алюминия при сварке трением с перемешиванием встык // Материаловедение. Энергетика. 2020. Т. 26. № 2. С. 88–102.
  6. Бродова И.Г., Зельдович В.И., Хомская И.В. Фазово-структурные превращения и свойства цветных металлов и сплавов при экстремальных воздействиях // ФММ. 2020. Т. 121. № 7. С. 696–730.
  7. Макаров С.В., Плотников В.А., Лысиков М.В., Колубаев Е.А. Накопление деформации и акустическая эмиссия в алюминиево-магниевом образце, полученном сваркой трением с перемешиванием // Письма о материалах. 2020. Т. 10. № 1. С. 27–32.
  8. Wu T., Zhao F., Luo H., Wang H., Li Y. Temperature Monitoring and Material Flow Characteristics of Friction Stir Welded 2A14-T6 Aerospace Aluminum Alloy // Materials. 2019. V. 12. P. 3387.
  9. Silva A.C.F., De Backer J., Bolmsjö G. Temperature measurements during friction stir welding // Int. J. Adv. Manuf. Technol. 2017. V. 88. P. 2899–2298.
  10. Naumov A., Morozova Yu., Isupov F., Golubev Y., Michailov V. Temperature Influence on Microstructure and Properties Evolution of Friction Stir Welded Al-Mg-Si Alloy // Key Eng. Mater. 2019. V. 82. P. 122–128.
  11. Nakamura T., Obikawa T., Yukutake E., Ueda S., Nishizaki I. Tool Temperature and Process Modeling of Friction Stir Welding // Modern Mechan. Eng. 2018. V. 8. P. 78–94.
  12. Chen C.M., Kovacevic R. Finite element modeling of friction stir welding – thermal and thermomechanical analysis // Intern. J. Machine Tools & Manufacture. 2003. V. 43. P. 1319–1326.
  13. McClure J.C., Tang W., Murr L.E., Guo X., Feng Z., Gould J.E. Thermal model in friction stir welding / in 5th Int’l. Trends in Welding Research Conference Proceedings. 1998. P. 590–596.
  14. Frigaard O., Grong Ø., Midling O.T. A Process Model for Friction Stir Welding of Age Hardening Aluminum Alloys // Metal. Mater. Trans. A. 2001. V. 32A. P. 1189–1200.
  15. Mathers G. The Welding Aluminium and its Alloys. Woodenhead Publishing Ltd. 2002.
  16. Staley J.T., Tiryakioğlu M. The Use of TTP Curves and Quench Factor Analysis for Property Prediction in Aluminum Alloys. Advances Metal. of Aluminum Alloys, Proceedings of the James T. Staley Honorary Symposium on Aluminum Alloys. 2001. P. 6–15.
  17. Кархин В.А. Тепловые процессы при сварке / 2-е изд., перераб. и доп. СПб.: Изд-во Политехн. ун-та, 2015. 572 с.
  18. Марочник стали и сплавов. Электронный ресурс. [http://www.splav-kharkov.com/mat_start.php?name_id=1438.]
  19. Hu Y. Microstructural Characterization and Phase Diagram Calculation of a Less Known Al–Fe–Mn–Si Phase in a SiCp/2014Al Composite // Microscopy and Microanalysis. 2019. V. 25. P. 859–865.
  20. Wang S.C., Starink M.J. Review of precipitation in Al–Cu–Mg(–Li) alloys // Int. Mater. Rev. 2005. V. 50. P. 193–215.
  21. Foss S., Olsen A., Simensen C.J., Taftù J. Determination of the crystal structure of the π-AlFeMgSi phase using symmetry- and site-sensitive electron microscope techniques // Acta Crystal. B. 2003. V. 59(1). P. 36–42.
  22. Воробьев Р.А., Сорокина С.А., Евстифеева В.В. Фазовый состав деформируемых алюминиевых сплавов Д16 и с количественной оценкой пережога разных стадий развития // Изв. вузов. Цветная металлургия. 2020. № 1. C. 68–78.
  23. Czerwinski F. Thermal Stability of Aluminum Alloys // Materials. 2020. V. 13. P. 3441.
  24. Styles M., Hutchinson C., Chen Y., Deschamps A., Bastow T. The competition between metastable and equilibrium S (Al2CuMg) phase during the decomposition of Al–Cu–Mg alloys // Acta Mat. 2012. V. 60. P. 6940–6951.
  25. Zhang F., Levine L.E., Allen A.J., Campbell C.E., Creuziger A.A., Kazantseva N., Ilavsky J. In situ structural characterization of ageing kinetics in aluminum alloy 2024 across angstrom-to-micrometer length scales // Acta Mater. 2016. V. 111. P. 385–398.
  26. Колобнев И.Ф. Термическая обработка алюминиевых сплавов. М.: Металлургиздат, 1960. 421 с.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Scheme of the friction stir welding process: a – general view; b – weld section; c – top view; d – working tool.

Жүктеу (223KB)
3. Fig. 2. Thermal cycles of three surface points located in the center of the weld, at a distance equal to the pin radius and the shoulder radius.

Жүктеу (80KB)
4. Fig. 3. Temperature distribution along the longitudinal section in the center of the weld joint core (plate surface Z=0; lower surface Z=10 mm).

Жүктеу (88KB)
5. Fig. 4. Welded joint area, cross-section, optical metallography: 1 – core; 2 – thermomechanical impact zone; 3 – heat-affected zone.

Жүктеу (151KB)
6. Fig. 5. Diffraction patterns obtained from different sections of the welded joint: (a) initial state; (b) heat-affected zone; (c) thermomechanical impact zone; (d) core.

Жүктеу (448KB)
7. Fig. 6. Microstructure and chemical analysis of the studied welded joint: (a) – initial state; (b) – heat-affected zone; (c) – thermomechanical impact zone; (d) – core.

Жүктеу (694KB)
8. Fig. 7. Direction of analysis of the microstructure and chemical composition of the weld core.

Жүктеу (169KB)
9. Fig. 8. Microstructure of the weld core corresponding to Fig. 7: (a) – region 1; (b) – region 2; (c) – region 3.

Жүктеу (336KB)
10. Fig. 9. Content of alloying elements (a) and amount of Al (b) in solid solution in the weld core zone.

Жүктеу (119KB)
11. Fig. 10. Diagram of isothermal decomposition of supercooled and supersaturated solid solution in alloy A2024 [24].

Жүктеу (135KB)