Структурно-фазовые превращения в α-Ti в ходе различных типов деформации при комнатной температуре
- Авторы: Шурыгина Н.А.1,2, Сундеев Р.В.2, Шалимова А.В.1, Велигжанин А.А.3, Блинова Е.Н.1, Глезер А.М.1, Черногорова О.П.4
-
Учреждения:
- ФГУП ЦНИИчермет им. И.П. Бардина
- РТУ МИРЭА
- НИЦ “Курчатовский институт”
- ИМЕТ РАН им. А.А. Байкова
- Выпуск: Том 125, № 9 (2024)
- Страницы: 1142-1149
- Раздел: СТРУКТУРА, ФАЗОВЫЕ ПРЕВРАЩЕНИЯ И ДИФФУЗИЯ
- URL: https://ruspoj.com/0015-3230/article/view/677435
- DOI: https://doi.org/10.31857/S0015323024090083
- EDN: https://elibrary.ru/KEQVOK
- ID: 677435
Цитировать
Аннотация
Проведено исследование фазового превращения в технически чистом титане при различных способах деформации: осадкой в условиях высокого давления и кручения под высоким квазигидростатическим давлением. Набор современных структурных методов исследования включал микроиндентирование, дифракцию рентгеновских лучей, просвечивающую электронную микроскопию, а также EXAFS-спектроскопию в синхротронном излучении для подробного выяснения локальной атомной структуры фаз. Выявлена корреляция между протеканием фазового превращения и способом деформации. Показано, что деформация сдвигом под высоким давлением при комнатной температуре в отличие от осадки под давлением без сдвиговой компоненты способствует возникновению высокотемпературной β-фазы с локальным атомным порядком, отличным от такового в исходной фазе.
Ключевые слова
Полный текст

Об авторах
Н. А. Шурыгина
ФГУП ЦНИИчермет им. И.П. Бардина; РТУ МИРЭА
Автор, ответственный за переписку.
Email: shnadya@yandex.ru
Россия, Москва, 105005; Москва, 119454
Р. В. Сундеев
РТУ МИРЭА
Email: shnadya@yandex.ru
Россия, Москва, 119454
А. В. Шалимова
ФГУП ЦНИИчермет им. И.П. Бардина
Email: shnadya@yandex.ru
Россия, Москва, 105005
А. А. Велигжанин
НИЦ “Курчатовский институт”
Email: shnadya@yandex.ru
Россия, Москва, 123182
Е. Н. Блинова
ФГУП ЦНИИчермет им. И.П. Бардина
Email: shnadya@yandex.ru
Россия, Москва, 105005
А. М. Глезер
ФГУП ЦНИИчермет им. И.П. Бардина
Email: shnadya@yandex.ru
Россия, Москва, 105005
О. П. Черногорова
ИМЕТ РАН им. А.А. Байкова
Email: shnadya@yandex.ru
Россия, Москва, 119334
Список литературы
- Vinogradov A., Estrin Yu. Analytical and numerical approaches to modelling severe plastic deformation // Progr. Mater. Sci. 2018. V. 95. P. 172–242.
- Edalati K., Bachmaier A., Beloshenko V., Beygelzimer Y., Blank V.D., Botta W.J., Bryła K., Čížek J., Divinski S., Enikeev N.A., Estrin Y., Faraji G., Figueiredo R.B., Fuji M., Furuta T., Grosdidier T., Gubicza J., Hohenwarter A., Horita Z., Huot J., Ikoma Y., Janeček M., Kawasaki M., Král P., Kuramoto S., Langdon T.G., Leiva D.R., Levitas V.I., Mazilkin A., Mito M., Miyamoto H., Nishizaki T., Pippan R., Popov V.V., Popova E.N., Purcek G., Renk O., Révész Á., Sauvage X., Sklenicka V., Skrotzki W., Straumal B.B., Suwas S., Toth L.S., Tsuji N., Valiev R.Z., Wilde G., Zehetbauer M.J., Zhu X. Nanomaterials by severe plastic deformation: review of historical developments and recent advances // Mater. Res. Lett. 2022. V. 10. P. 163–256.
- Edalati K., Horita Z. A review on high-pressure torsion (HPT) from 1935 to 1988 // Mater. Sci. Eng.A. 2016. V. 652. P. 325.
- Glezer A.M., Kozlov E.V., Koneva N.A., Popova N.A. and Kurzina I.A. Plastic Deformation of Nanostructured Materials // CISP, Taylor & Francis Group. 2017. 334 p.
- Страумал Б.Б., Заворотнев Ю.Д., Метлов Л.С., Страумал П.Б., Петренко А.Г., Томашевская Е.Ю. Фазовые превращения, вызванные кручением под высоким давлением // ФММ. 2022. T. 123. № 12. С. 1283–1288.
- Утяшев Ф.З. Деформационные методы получения и обработки ультрамелкозеренных материалов. Уфа: Гилем. НИКБашк. энцикл, 2013. 376 с.
- Zhang J., Zhao Y., Pantea C., Qian J., Daemen L.L., Rigg P.A, Hixson R.S., Greeff C.W., Gray III G.T., Yang Y., Wang L., Wang Y., Uchid T. Experimental constraints on the phase diagram of elemental zirconium // J. Phys. Chem. Sol. 2005. V. 66. P. 1213.
- Валиев Р.З., Усанов Э.И., Резяпова Л.Р. Сверхпрочность наноструктурных металлических материалов: физическая природа и механизмы упрочнения // ФММ. 2022. Т. 123. № 12. С. 1355–1361.
- Nosova G.I. Phase Transformations in Titanium Based Alloys. Moscow: Metallurgia, 1968. 180 p.
- Zel'Dovich V.I., Frolova N. Yu., Patselov A.M., Gundyrev V.M., Kheifets A.E., Pilyugin V.P. The ω-phase in titanium upon deformation under pressure // Phys. Met. Metal. 2010. V. 109. № 1. P. 30–38.
- Жиляев А.П., Попов В.А., Шарафутдинов А.Р., Даниленко В.Н. Индуцированная сдвигом под давлением метастабильная ω-фаза в титане // Письма о материалах. 2011. Т. 1. С. 203–207.
- Kriegel M.J., Rudolph M., Kilmametov A., Straumal B.B., Ivanisenko J., Fabrichnaya O., Hahn H., Rafaja D. Formation and Thermal Stability of ω-Ti(Fe) in α-Phase-Based Ti(Fe) Alloys // Metals. 2020. V. 10. P. 402.
- Shirooyeh M., Xu J., Langdon T.G. Microhardness evolution and mechanical characteristics of commercial purity titanium processed by high-pressure torsion // Mater. Sci. Eng. A. 2014. V. 614. P. 223–231.
- Egorova L. Yu., Khlebnikova Yu.V., Pilyugin V.P., Resnina N.N. Calorimetry and peculiarities of reverse ω → α phase transformation in Zr and Ti pseudo-single crystals // Phys. Met. Metal. 2022. V. 123. № 5. P. 482–488.
- Todaka Y., Sasaki J., Moto T., Umemoto M. Bulk submicrocrystalline ω-Ti produced by high-pressure torsion straining // Scripta Mater. 2008. V. 59. P. 615–618.
- Pérez-Prado M.T., Gimazov A.A., Ruano O.A. Bulk nanocrystalline ω-Zr by high-pressure torsion // Scripta Mater. 2008. V. 58. P. 219.
- Zhilyaev A.P., Galvez F., Sharafutdinov A., Pérez-Prado M.T. Influence of the high pressure torsion die geometry on the allotropic phase transformations in pure Zr // Mater. Sci. Eng. A. 2010. V. 527. P. 3918.
- Adachi N., Todaka Y., Suzuki H., Umemoto M. Evolution of deformation texture of high-pressure ω-phases in pure Ti and Zr during high-pressure torsion straining // IOP Conf. Series: Mater. Sci. Eng. 2015. V. 82. P. 012020.
- Shahmir H., Langdon T.G. Characteristics of the allotropic phase transformation in titanium processed by high-pressure torsion using different rotation speeds // Mater. Sci. Eng. A. 2016. V. 667. P. 293–299.
- Shurygina N.A., Cheretaeva A.O., Glezer A.M., D’yakonov D.L., Chshetinin I.V., Sundeev R.V., Tomchuk A.A., Muradimova L.F. Effect of the temperature of megaplastic deformation in a Bridgman chamber on the formation of structures and the physicochemical properties of Titanium // Bulletin of the Russian Academy of Sciences: Physics. 2018. V. 82. № 9. P. 1113–1124.
- Chernyshov A.A., Veligzhanin A.A., Zubavichus Y.V. Structural Materials Science end-station at the Kurchatov Synchrotron Radiation Source: Recent instrumentation upgrades and experimental results //Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2009. V. 603. № 1–2. P. 95–98.
- Newville M. EXAFS analysis using FEFF and FEFFIT // J. Synchrotron Radiation. 2001. V. 8. № 2. P. 96–100.
- Sigov A.S., Lazarenko E.R., Golovanova N.B., Minaeva O.A., Anevsky S.I., Minaev R.V., Pushkin P. Yu. Synchrotron radiation of a single electron application for optical spectroradiometry // Russ. Technol. J. 2023. V. 11. № 5. P. 71–80.
- Joress H., Ravel B., Anber E., Hollenbach J., Sur D., Hattrick-Simpers J., Taheri M.L., DeCost B. Why is EXAFS for complex concentrated alloys so hard? Challenges and opportunities for measuring ordering with X-ray absorption spectroscopy // Matter. 2023. V. 6. № 11. P. 3763–3781.
- Srabionyan V.V., Bugaev A.L., Pryadchenko V.V., Avakyan L.A., van Bokhoven J.A., Bugaev L.A. EXAFS study of size dependence of atomic structure in palladium nanoparticles // J. Phys. Chem. Solids. 2014. V. 75. № 4. P. 470–476.
- Wyckoff R.W.G. Hexagonal closest packed, hcp, structure / Crystal Structures, Second edition. Interscience Publishers. New York, 1963. V. 1. P. 7–83.
- Ильин А.А., Колачев Б.А., Полькин И.С. Титановые сплавы. Состав, структура, свойства. Справочник. Москва: ВИЛС–МАТИ, 2009. 520 c.
- Wei H. Effect of alloying elements on the properties of titanium alloy // Rare Metal Mater. Eng. 1978. V. 7. P. 47–75.
- Glezer A.M., Sundeev R.V., Shalimova A.V., Metlov L.S. Physics of severe plastic deformation // Phys. Usp. 2023. V. 66. P. 3258.
- Edalati K., Miresmaeili R., Horita Z. Significance of temperature increase in processing by high-pressure torsion Mater. Sci. Eng. A. 2011. V. 528. P. 7301.
- Pereira P.H.R., Figueiredo R.B., Huang Y., Cetlin P.R., Langdon T.G. Modeling the temperature rise in high-pressure torsion // Mater. Sci. Eng. A. 2014. V. 593. P. 185–188.
- Hartley K.A., Duffy J., Hawley R.H. Measurement of the temperature profile during shear band formation in steels deforming at high strain rates // J. Mech. Phys. Solids. 1987. V. 35. № 3. P. 283–301.
- Li J.G., Umemoto M., Todaka Y., Fujisaku K., Tsuchiya K. The dynamic phase transformation and formation of nanocrystalline structure in SUS304 austenitic stainless steel subjected to high pressure torsion // Rev. Adv. Mater. Sci. 2008. V. 18. P. 577–582.
- Разумов И.К., Ермаков А.Е., Горностырев Ю.Н., Страумал Б.Б. Неравновесные фазовые превращения в сплавах при интенсивной пластической деформации // УФН. 2020. Т. 190. № 8. С. 785–810.
- Kilmametov A.R., Vaughan G., Yavari A.R., LeMoulec A., Botta W.J., Valiev R.Z. Microstructure evolution in copper under severe plastic deformation detected by in situ X-ray diffraction using monochromatic synchrotron light // Mater. Sci. Eng. A. 2009. V. 503. № 1–2. P. 10–13.
Дополнительные файлы
