Dislocation mechanisms of misfit stress relaxation in crystalline nanoheterostructures

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A brief review of theoretical models describing the dislocation mechanisms of misfit stress relaxation in crystalline nanoheterostructures of lower dimension, such as composite nanoparticles, nanowires, and nanolayers is presented. The critical conditions for the appearance of the first misfit dislocations in such nanoheterostructures are determined. The equilibrium distribution density was calculated for the circular prismatic loops of misfit dislocations in core–shell nanowires and proved to be in good agreement with the results of experimental observations. Energy barriers have been found for the nucleation of misfit dislocations in composite nanowires with a core shaped as a rectangular prism and in composite nanolayers with long prismatic inclusions. The lowest barriers are shown to occur upon the emission of partial or perfect dislocation dipoles by the edges of inclusions, depending on the characteristic dimensions of a heterostructure. The directions of further studies in this area were proposed.

全文:

受限制的访问

作者简介

M. Gutkin

Institute for Problems in Mechanical Engineering of the Russian Academy of Sciences; ITMO University; Peter the Great St. Petersburg Polytechnic University

编辑信件的主要联系方式.
Email: m.y.gutkin@gmail.com
俄罗斯联邦, Saint Petersburg, 199178; Saint Petersburg, 197101; Saint Petersburg, 195251

A. Kolesnikova

Institute for Problems in Mechanical Engineering of the Russian Academy of Sciences; ITMO University

Email: m.y.gutkin@gmail.com
俄罗斯联邦, Saint Petersburg, 199178; Saint Petersburg, 197101

S. Krasnitckii

ITMO University

Email: m.y.gutkin@gmail.com
俄罗斯联邦, Saint Petersburg, 197101

K. Mikaelyan

Institute for Problems in Mechanical Engineering of the Russian Academy of Sciences

Email: m.y.gutkin@gmail.com
俄罗斯联邦, Saint Petersburg, 199178

D. Mikheev

Peter the Great St. Petersburg Polytechnic University

Email: m.y.gutkin@gmail.com
俄罗斯联邦, Saint Petersburg, 195251

D. Petrov

Institute for Problems in Mechanical Engineering of the Russian Academy of Sciences

Email: m.y.gutkin@gmail.com
俄罗斯联邦, Saint Petersburg, 199178

A. Romanov

ITMO University; Ioffe Institute

Email: m.y.gutkin@gmail.com
俄罗斯联邦, Saint Petersburg, 197101; Saint Petersburg, 194021

A. Smirnov

ITMO University

Email: m.y.gutkin@gmail.com
俄罗斯联邦, Saint Petersburg, 197101

A. Chernakov

Institute for Problems in Mechanical Engineering of the Russian Academy of Sciences; Ioffe Institute

Email: m.y.gutkin@gmail.com
俄罗斯联邦, Saint Petersburg, 199178; Saint Petersburg, 194021

参考

  1. Freund L.B., Suresh S. Thin film materials: stress, defect formation and surface evolution. Cambridge: University Press, 2004. 750 p.
  2. Gutkin M. Yu., Kolesnikova A.L., Romanov A.E. Nanomechanics of stress relaxation in composite low-dimensional structures / Altenbach H., Öchsner A. (eds.) Encyclopedia of Continuum Mechanics. Springer, Berlin and Heidelberg. 2020. P. 1778–1799.
  3. Smirnov A.M., Krasnitckii S.A., Rochas S.S., Gutkin M.Yu. Critical conditions of dislocation generation in core-shell nanowires: A review // Rev. Adv. Mater. Technol. 2020. V. 2. No. 3. P. 19–43.
  4. Романов А.Е., Колесникова А.Л., Гуткин М.Ю. Внутренние напряжения и структурные дефекты в нанопроволоках // ПММ. 2022. Т. 86. № 4. С. 527–550.
  5. Frank F.C., van der Merwe J.H. One-dimensional dislocations. I. Static theory // Proc. Roy. Soc. London. Ser. A. Math. Phys. Sci. 1949. V. 198. No. 1052. P. 205–216.
  6. Matthews J.W. Defects associated with the accommodation of misfit between crystals // J. Vac. Sci. Technol. 1975. V. 12. No. 1. P. 126–133.
  7. Matthews J.W. Misfit dislocations / Nabarro F.R.N. (ed.) Dislocations in Solids. Amsterdam: North-Holland, 1979. V. 2. P. 461–545.
  8. Jesser W.A., van der Merwe J.H. The prediction of critical misfit and thickness in epitaxy / Nabarro F.R.N. (ed.) Dislocations in Solids. Amsterdam: Elsevier, 1989. V. 8. P. 421–460.
  9. Nix W.D. Mechanical properties of thin films // Metall. Trans. A. 1989. V. 20. No. 11. P. 2217–2245.
  10. Jain S.C., Willis J.R., Bullough R. A review of theoretical and experimental work on the structure of GexSi1–x strained layers and superlattices, with extensive bibliography // Adv. Phys. 1990. V. 39. No. 2. P. 127–190.
  11. Fitzgerald E.A. Dislocations in strained layer epitaxy: theory, experiment, and applications // Mater. Sci. Rep. 1991. V. 7. No. 1. P. 87–142.
  12. Van der Merwe J.H. Strain relaxation in epitaxial overlayers // J. Electron. Maters. 1991. V. 20. No. 10. P. 793–803.
  13. Gutkin M. Yu., Kolesnikova A.L., Romanov A.E. Misfit dislocations and other defects in thin films // Mater. Sci. Eng. A. 1993. V. 164. Nos. 1–2. P. 433–437.
  14. Jesser W.A., Kui J. Misfit dislocation generation mehanisms in heterostructures // Mater. Sci. Engng. A. 1993. V. 164. Nos. 1–2. P. 101–110.
  15. Beanland R., Dunstan D.J., Goodhew P.J. Plastic relaxation and relaxed buffer layers for semiconductor epitaxy // Adv. Phys. 1996. V. 45. No. 2. P. 87–146.
  16. Jain S.C., Harker A.H., Cowley R.A. Misfit strain and misfit dislocations in lattice mismatched epitaxial layers and other systems // Philos. Mag. A. 1997. V. 75. No. 6. P. 1461–1515.
  17. Vdovin V.I. Misfit dislocations in epitaxial heterostructures: mechanisms of generation and multiplication // Phys. stat. sol. (a). 1999. V. 171. No. 1. P. 239–250.
  18. Болховитянов Ю.Б., Пчеляков О.П., Чикичев С.И. Кремний-германиевые эпитаксиальные пленки: физические основы получения напряженных и полностью релаксированных гетероструктур // УФН. 2001. Т. 171. № 7. С. 689–715.
  19. Тхорик Ю.А., Хазан Л.С. Пластическая деформация и дислокации неcоответствия в гетероэпитаксиальных системах. Киев: Наукова думка, 1983. 304 с.
  20. Мильвидский М.Г., Освенский В.Б. Cтруктурные дефекты в эпитаксиальных слоях полупроводников. М.: Металлургия, 1985. 160 с.
  21. Ayers J.E., Kujofsa T., Rago P., Raphael J.E. Heteroepitaxy of semiconductors: Theory, growth, and characterization, 2nd edition. CRC Press, Taylor & Francis Group, Boca Raton, FL. 2017. 627 p.
  22. Trusov L.I., Tanakov M. Yu., Gryaznov V.G., Kaprelov A.M., Romanov A.E. Relaxation of elastic stresses in overlayed microcrystals // J. Cryst. Growth. 1991. V. 114. Nos. 1–2. P. 133–140.
  23. Gutkin M. Yu., Romanov A.E. Misfit dislocations in a thin two-phase heteroepitaxial plate // Phys. stat. sol. (a). 1992. V. 129. No. 1. P. 117–126.
  24. Gutkin M. Yu., Ovid’ko I.A., Sheinerman A.G. Misfit dislocations in wire composite solids // J. Phys.: Condens. Matter. 2000. V. 12. No. 25. P. 5391–5401.
  25. Sheinerman A.G., Gutkin M. Yu. Misfit disclinations and dislocation walls in a two-phase cylindrical composite // Phys. stat. sol. (a). 2001. V. 184. No. 2. P. 485–505.
  26. Ovid’ko I.A., Sheinerman A.G. Misfit dislocation loops in composite nanowires // Phil. Mag. 2004. V. 84. No. 20. P. 2103–2118.
  27. Aifantis K.E., Kolesnikova A.L., Romanov A.E. Nucleation of misfit dislocations and plastic deformation in core/shell nanowires // Phil. Mag. 2007. V. 87. No. 30. P. 4731–4757.
  28. Colin J. Prismatic dislocation loops in strained core-shell nanowire heterostructures // Phys. Rev. B. 2010. V. 82. No. 5. Art. 054118.
  29. Chu H.J., Wang J., Zhou C.Z., Beyerlein I.J. Self-energy of elliptical dislocation loops in anisotropic crystals and its application for defect-free core/shell nanowires // Acta Mater. 2011. V. 59. No. 18. P. 7114–7124.
  30. Gutkin M. Yu., Kuzmin K.V., Sheinerman A.G. Misfit stresses and relaxation mechanisms in a nanowire containing a coaxial cylindrical inclusion of finite height // Phys. Stat. Solidi B. 2011. V. 248. No. 7. P. 1651–1657.
  31. Ertekin E., Greaney P.A., Chrzan D.C., Sands T.D. Equilibrium limits of coherency in strained nanowire heterostructures // J. Appl. Phys. 2005. V. 97. No. 11. Art. 114325.
  32. Glas F. Critical dimensions for the plastic relaxation of strained axial heterostructures in free-standing nanowires // Phys. Rev. B. 2006. V. 74. No. 12. Art. 121302.
  33. Ovid’ko I.A., Sheinerman A.G. Misfit dislocations in nanocomposites with quantum dots, nanowires and their ensembles // Adv. Phys. 2006. V. 55. Nos. 7–8. P. 627–689.
  34. Kavanagh K.L. Misfit dislocations in nanowire heterostructures // Semicond. Sci. Technol. 2010. V. 25. No. 2. Art. 024006.
  35. Glas F. Strain in nanowires and nanowire heterostructures // Semicond. Semimetals. 2015. V. 93. P. 79–123.
  36. Гуткин М.Ю., Овидько И.А. Физическая механика деформируемых наноструктур. Том II. Нанослойные структуры. СПб.: Янус, 2005. 352 с.
  37. Гуткин М.Ю. Прочность и пластичность нанокомпозитов: учеб. пособие. СПб.: Изд-во Политехн. ун-та, 2011. 165 с.
  38. Овидько И.А., Шейнерман А.Г. Механика нанопроволок и наноструктурных пленок. СПб.: Экслибрис-Норд, 2011. 181 с.
  39. Gutkin M. Yu. Misfit stress relaxation in composite nanoparticles // Int. J. Eng. Sci. 2012. V. 61. Special Issue. P. 59–74.
  40. Kolesnikova A.L., Gutkin M. Yu., Krasnitckii S.A., Romanov A.E. Circular prismatic dislocation loops in elastic bodies with spherical free surfaces // Intern. J. Sol. Struct. 2013. V. 50. No. 10. P. 1839–1857.
  41. Chernakov A.P., Kolesnikova A.L., Gutkin M. Yu., Romanov A.E. Periodic array of misfit dislocation loops and stress relaxation in core-shell nanowires // Int. J. Eng. Sci. 2020. V. 156. Art. 103367.
  42. Krasnitckii S.A., Smirnov A.M., Gutkin M. Yu. Pair interaction of coaxial circular prismatic dislocation loops in elastic solids with spherical surfaces // Mater. Phys. Mech. 2020. V. 44. No. 1. P. 116–124.
  43. Kolesnikova A.L., Chernakov A.P., Gutkin M. Yu., Romanov A.E. Prismatic dislocation loops in crystalline materials with empty and coated channels // Europ. J. Mech. – A/Solids. 2022. V. 94. Art. 104612.
  44. Гуткин М.Ю., Колесникова А.Л., Красницкий С.А., Романов А.Е. Петли дислокаций несоответствия в композитных наночастицах типа ядро-оболочка // ФТТ. 2014. T. 56. № 4. C. 695–702.
  45. Gutkin M. Yu., Kolesnikova A.L., Mikheev D.S., Romanov A.E. Misfit stresses and their relaxation by misfit dislocation loops in core-shell nanoparticles with truncated spherical cores // Europ. J. Mech. – A/Solids. 2020. V. 81. Art. 103967.
  46. Gutkin M. Yu., Kolesnikova A.L., Krasnitckii S.A., Romanov A.E., Shalkovskii A.G. Misfit dislocation loops in hollow core-shell nanoparticles // Scripta Mater. 2014. V. 83. No. 1. P. 1–4.
  47. Krauchanka M. Yu., Krasnitckii S.A., Gutkin M. Yu., Kolesnikova A.L., Romanov A.E. Circular loops of misfit dislocations in decahedral core-shell nanoparticles // Scripta Mater. 2019. V. 167. P. 81–85.
  48. Kolesnikova A.L., Gutkin M. Yu., Proskura A.V., Morozov N.F., Romanov A.E. Elastic fields of straight wedge disclinations axially piercing bodies with spherical free surfaces // Int. J. Sol. Struct. 2016. V. 99. P. 82–96.
  49. Петров Д.А., Гуткин М.Ю., Колесникова А.Л., Романов А.Е. Критические условия образования прямолинейных дислокаций несоответствия в композитных наночастицах / Материалы LXVI Международной конференции “Актуальные проблемы прочности” (АПП-2023), 23–27 сентября, Зеленогорск. Санкт-Петербург, Россия. Издательство ВВМ, СПб.: ПОЛИТЕХ-ПРЕСС, 2023. С. 27.
  50. Петров Д.А., Гуткин М.Ю., Колесникова А.Л., Романов А.Е. Краевая дислокация в упругом шаре / XIII Всероссийский Съезд по теоретической и прикладной механике: сборник тезисов докладов в 4 томах, 21–25 августа 2023 г., Санкт-Петербург. Т. 4. Материалы симпозиумов и Исторической сессии. СПб: ПОЛИТЕХ-ПРЕСС, 2023. С. 501–503.
  51. Romanov A.E., Kolesnikova A.L., Gutkin M.Yu. Elasticity of a cylinder with axially varying dilatational eigenstrain // Int. J. Sol. Struct. 2021. V. 213. P. 121–134.
  52. Kolesnikova A.L., Chernakov A.P., Gutkin M. Yu., Romanov A.E. Misfit strain induced out-of-interface prismatic dislocation loops in axially inhomogeneous hybrid nanowires // Extr. Mech. Lett. 2022. V. 56. No. 10. Art. 101861.
  53. Владимиров В.И., Гуткин М.Ю., Романов А.Е. Влияние свободной поверхности на равновесное напряженное состояние в гетероэпитаксиальных системах // Поверхность. Физика, химия, механика. 1988. № 6. C. 46–51.
  54. Гуткин М.Ю., Микаелян К.Н., Овидько И.А. Равновесные конфигурации частичных дислокаций несоответствия в тонкопленочных гетеросистемах // ФТТ. 1998. Т. 40. № 11. С. 2059–2064.
  55. Kolesnikova A.L., Ovid’ko I.A., Romanov A.E. Misfit disclination structures in nanocrystalline and polycrystalline films // Sol. State Phenom. 2002. V. 87. P. 265–275.
  56. Gutkin M. Yu., Panpurin S.N. Spontaneous formation and equilibrium distribution of cylindrical quantum dots in atomically inhomogeneous pentagonal nanowires // J. Macromol. Sci. Part B: Physics. 2013. V. 52. No. 12. P. 1756–1769.
  57. Гуткин М.Ю., Панпурин С.Н. Равновесные ансамбли квантовых точек в пентагональных нанопроволоках неоднородного атомного состава // ФТТ. 2014. T. 56. № 6. C. 1141–1147.
  58. Popovitz-Biro R., Kretinin A., Von Huth P., Shtrikman H. InAs/GaAs core-shell nanowires // Cryst. Growth Des. 2011. V. 11. No. 9. P. 3858–3865.
  59. Михеев Д.С., Гуткин М.Ю., Колесникова А.Л., Красницкий С.А., Романов А.Е. Напряженно-деформированное состояние и механизмы его релаксации в сферической композитной наночастице с ядром в форме усеченного шара / XIII Всероссийский Съезд по теоретической и прикладной механике: сборник тезисов докладов в 4 томах. 21–25 августа 2023 г. Санкт-Петербург. Т. 4. Материалы симпозиумов и Исторической сессии. СПб.: ПОЛИТЕХ-ПРЕСС, 2023. С. 489–491.
  60. Mikaelyan K.N., Gutkin M. Yu., Borodin E.N., Romanov A.E. Dislocation emission from the edge of a misfitting nanowire embedded in a free-standing nanolayer // Int. J. Sol. Struct. 2019. V. 161. P. 127–135.
  61. Smirnov A.M., Krasnitckii S.A., Gutkin M. Yu. Generation of misfit dislocations in a core-shell nanowire near the edge of prismatic core // Acta Mater. 2020. V. 186. P. 494–510.
  62. Малышев К.Л., Гуткин М.Ю., Романов А.Е., Ситникова А.А., Сорокин Л.М. Дислокационные модели и дифракционный контраст стержнеобразных дефектов в кремнии / Препринт ФТИ им. А.Ф. Иоффе АН СССР № 1109. Л.: Издательство ФТИ, 1987. 43 с.
  63. Krasnitckii S.A., Smirnov A.M., Gutkin M.Yu. Misfit stresses in a core-shell nanowire with core in the form of long parallelepiped // J. Phys.: Conf. Ser. 2016. V. 690. Art. 012022.
  64. Krasnitckii S.A., Smirnov A.M., Gutkin M.Yu. Misfit stress and energy in composite nanowire with polygonal core // Intern. J. Eng. Sci. 2023. V. 193. Art. 103959.

补充文件

附件文件
动作
1. JATS XML
2. 1. Models of mismatch dislocations in spherical core–shell nanoheterostructures: in solid (a) and hollow (b) monocrystalline nanoparticles, in decahedral nanoparticles (c) and in nanoparticles with hemispherical cores (d, e). Diagrams (a–d) show circular prismatic dislocation loops (PDPs), while diagram (e) shows rectilinear edge dislocation. Here a1 and a2 are the lattice parameters of the core and shell materials; Rp, Rc and R are the radii of the pore, core and shell; b is the Burgers vector of dislocations; ω is the value of the Frank vector of wedge disclosure, which models the stress state in a decahedral particle; (x, y, z) is the Cartesian coordinate system.

下载 (232KB)
3. Fig. 2. Models of circular prismatic dislocation loops (PDPs) in various cylindrical nanoheterostructures: in a core–shell nanowire (a), around a hollow nanotube embedded in a volumetric matrix (b), and at a flat transverse interface in a segmented nanowire (c). Here a1 and a2 are the parameters lattices of contacting materials; Rp, Rc, Rt, and R are the radii of pores, nuclei, nanotubes, and nanowires; b is the Burgers vector of the dislocation loop.

下载 (159KB)
4. Fig. 3. Equilibrium distribution of DN loops in a core–shell nanowire. (a) A model of a periodic series of DN loops. (b) The dependence of the energy change of a ΔE nanowire upon the formation of a periodic series of DN loops in it on the reduced distance h/R between the loops for a nanowire consisting of an InAs core and a GaAs shell with a mismatch f = (a1 — a2)/a1 = 0.0717 [58]. The minimum on the curve corresponds to the equilibrium distance between the loops h ≈ 8.35 nm (according to [41]). Here a1 and a2 are the lattice parameters of the core and shell materials, Rc and R are the radii of the core and shell, G and v are the shear modulus and Poisson's ratio, which are the same for core and shell materials, and b is the Burgers vector of the DN loop.

下载 (118KB)
5. 4. The cross section of the inclusion in the form of a long parallelepiped (nanowires) with dimensions 2l = 2a in a 2d nanolayer. The upper left edge of the nanowire emits a dipole of edge dislocations with Burgers ± b vectors, one of which slides along the inclusion boundary, occupies an equilibrium position x1 on it and becomes a mismatch dislocation, while the second slides to the free surface of the nanolayer and either stops at the equilibrium position x2 or reaches this surface. Here (x, y) is the Cartesian coordinate system in the nanowire cross section.

下载 (89KB)
6. 5. Energy barriers ΔW for different mechanisms of dislocation nucleation in a model Au–Pd nanowire with a radius of 5, 10, and 50 nm (according to [61]). The diagrams of these mechanisms are shown below the histogram (from left to right): sliding of a partial mismatch dislocation (PD) from the surface of the nanowire along the interface inside the shell, sliding of a complete mismatch dislocation (PD) from the surface of the nanowire along the interface inside the shell, sliding of the PD from the surface of the nanowire along the interface inside the core, sliding of the PD from the surface of the nanowire along the interface inside the core, crawling of the PD from the surface of the nanowire to at the interface, the emission of sliding black holes by the edge of the core of the dipole, the emission of a sliding PDN by the edge of the core of the dipole. Here R is the radius of the nanowire, 2l is the side of the square section of the core.

下载 (230KB)