Polymorphism of the NIPAL1 gene rs135173498 as a marker of embryonic lethality in auliekol cattle

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

It was found that in Auliekol cattle, SNP G/A rs135173498 associated with live weight at birth (p-value = 2.71E-06) is characterized by the absence of live-born calves homozygous for the rare genotype with a significant sample size of 497 animals. At the same time, calves with a heterozygous genotype were not characterized by a decrease in live weight at birth relative to the values of this indicator for the sample as a whole. The article analyzes possible mechanisms for the development of the phenotypic effect of SNP rs135173498 of the NIPAL1 gene as a factor of embryonic lethality in Auliekol cattle, and, presumably, in the Kazakh Whitehead, Aberdeen Angus and Charolais breeds.

Texto integral

Acesso é fechado

Sobre autores

A. Belaya

Belarusian State Pedagogical University named after Maxim Tank

Autor responsável pela correspondência
Email: Kolyuchka005@rambler.ru
Belarus, Minsk

Е. Klimanova

Novosibirsk State Agrarian University

Email: Kolyuchka005@rambler.ru
Rússia, Novosibirsk

V. Norkina

Novosibirsk State Agrarian University

Email: Kolyuchka005@rambler.ru
Rússia, Novosibirsk

I. Beishova

Zhangir Khan West Kazakhstan Agrarian Technical University

Email: Kolyuchka005@rambler.ru
Cazaquistão, Uralsk

Bibliografia

  1. Шайдуллин Р.Р., Фаизов Т.Х., Ганиев А.С. Характер распространения летальных генов у молочного скота // Уч. записки КГАВМ им. Н. Э. Баумана. 2015. № 2. C. 242–244. https://doi.org/cyberleninka.ru/article/n/harakter-rasprostraneniya-letalnyh-genov-u-molochnogo-skota
  2. Charlier C., Coppieters W., Rollin F. et al. Highly effective snp-based association mapping and management of recessive defects in livestock // Nat. Genet. 2008. V. 40. P. 449–454. https://doi.org/10.1038/ng.96
  3. Van Raden P.M., Olson K.M., Null D.J. et al. Harmful recessive effects on fertility detected by absence of homozygous haplotypes // J. Dairy Sci. 2011. № 94. P. 6153–6161. https://doi.org/10.3168/jds.2011-4624
  4. Fritz S., Capitan A., Djari A. et al. Detection of haplotypes associated with prenatal death in dairy cattle and identification of deleterious mutations in gart, shbg and slc37a2 // PLoS One. 2013. V. 8. № 6. https://doi.org/10.1371/journal.pone.0065550
  5. Cooper T.A., Wiggans G.R., Van Raden P.M. et al. Genomic evaluation of ayrshire dairy cattle and new haplotypes affecting fertility and stillbirth in holstein, brown swiss and ayrshire breeds // http://aipl.arsusda.gov
  6. Sonstegard T.S., Cole J.B., Van Raden P.M. et al. Identification of a nonsense mutation in cwc15 associated with decreased reproductive efficiency in jersey cattle // PLoS One. 2013. V. 8. № 1. P. 1–6. https://doi.org/10.1371/journal.pone.0054872
  7. McClure M., Kim E., Bickhart D. et al. Fine mapping for weaver syndrome in brown swiss cattle and the identification of 41 concordant mutations across nrcam, pnpla8 and cttnbp2 // PLoS One. 2013. V. 8. № 3. P. 1–16. https://doi.org/10.1371/journal.pone.0059251
  8. Kadri N.K., Sahana G., Charlier C. et al. A 660-Kb deletion with antagonistic effects on fertility and milk production segregates at high frequency in nordic red cattle: Additional evidence for the common occurrence of balancing selection in livestock // PLoS Genet. 2014. V. 10. № 1. P. 1–11. https://doi.org/10.1371/journal.pgen.1004049
  9. Häfliger I.M., Spengeler M., Seefried F.R. et al. Four novel candidate causal variants for deficient homozygous haplotypes in holstein cattle // Sci. Rep. 2022. № 12. P. 1–13. https://doi.org/10.1038/s41598-022-09403-6
  10. Cooper T.A., Wiggans G.R., Null D.J. et al. Genomic evaluation, breed identification, and discovery of a haplotype affecting fertility for ayrshire dairy cattle // J. Dairy Sci. 2014. V. 97. № 6. P. 3878–3882. https://doi.org/10.3168/jds.2013-7427
  11. Гладырь Е.А., Терновская О.А., Костюнина О.В. Скрининг гаплотипа фертильности АН1 айрширской породы крупного рогатого скота Центрального и Северо-Западного регионов России // АгроЗооТехника. 2018. Т. 1. № 4. С. 1–13. https://doi.org/10.15838/alt.2018.1.4.1
  12. Зиновьева Н.А. Гаплотипы фертильности голштинского скота // С.-х. биология. 2016. Т. 51. № 4. C. 423–435. https://doi.org/10.15389/agrobiology.2016.4.423rus
  13. Белая Е.В., Наметов А.М., Шамшидин А.С. Полногеномный поиск ассоциаций c QTL мясной продуктивности у скота казахской белоголовой и аулиекольской пород // Главный зоотехник. 2022. № 7. С. 3–11. https://doi.org/10.33920/sel-03-2207-01
  14. Белая Е.В. Биологические функции породоспецифичных SNP-маркеров мясной продуктивности у крупного рогатого скота казахской белоголовой и аулиекольской пород // Генетика и разведение животных. 2022. № 2. С. 33–39. https://doi.org/10.31043/2410-2733-2022-2-33-39
  15. Белая Е.В., Бейшова И.С., Селионова М.И. и др. Полногеномный поиск QLT-ассоциированных SNP для прогнозирования наследственного потенциала продуктивности у казахского белоголового скота // Вестник АПК Ставрополья. 2022. № 3(47). С. 18–25. https://doi.org/10.31279/2222-9345-2022-11-47-18-25
  16. Purcell S.M., Neale B., Todd-Brown K. et al. PLINK: A tool set for whole-genome association and population-based linkage analyses // Am. J. Hum. Genet. 2007. V. 81. P. 559–575. https://doi.org/10.1086/519795
  17. Manialawy Y., Khan S.R., Bhattacharjee A. et al. The magnesium transporter nipal1 is a pancreatic islet-expressed protein that conditionally impacts insulin secretion // J. Biol. Chem. 2020. V. 295. P. 9879–9892. https://doi.org/10.1074/jbc.RA120.013277
  18. Dadousis C., Somavilla A., Ilska J.J. et al. A genome-wide association analysis for body weight at 35 days measured on 137,343 broiler chickens // Genet. Sel. Evol. 2021. V. 53(1). P. 1–14. https://doi.org/10.1186/s12711-021-00663-w
  19. Wei W., Gao W., Li Q. et al. Comprehensive characterization of posttranscriptional impairment-related 3′-utr mutations in 2413 whole genomes of cancer patients // NPJ Genom. Med. 2022. V. 7. P. 1–12. https://doi.org/10.1038/s41525-022-00305-0
  20. Mayr C. What are 3’ utrs doing? // Cold. Spring. Harb. Perspect Biol. 2019. № 10. P. 1–15. https://doi.org/10.1101/cshperspect.a034728
  21. Duff M.O., Olson S., Wei X. et al. Genome-wide identification of zero nucleotide recursive splicing in drosophila // Nature. 2015. №. 521(7552). P. 376–379. https://doi.org/10.1038/nature14475
  22. Beishova I., Dossybayev K., Shamshidin A. et al. Distribution of homozygosity regions in the genome of Кazakh cattle breeds // Diversity. 2022. V. 14(4). P. 1–11. https://doi.org/10.3390/d14040279

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Quantile-quantile graphs (QQ plot). On the Y-axis are the observed values of p (converted using the inverse decimal logarithm of p, [15]).

Baixar (92KB)
3. 2. Intracellular localization of NIPAL1 (GeneCards). The confidence scale is color-coded: from light green (1) for low confidence to dark green (5) for high confidence; white (0) indicates no signs of localization.

Baixar (317KB)
4. Fig. 3. Protein–protein interactions of the protein product of the NIPAL1 gene, constructed using string-db.org (in cattle).

Baixar (174KB)
5. 4. The level of NIPAL1 expression in 20 different human tissues (cited in [20]).

Baixar (146KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025