Collective excitations in amorphous ice

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The paper presents the results of a study of microscopic collective excitations in low-density amorphous ice obtained by molecular dynamics simulation based on the monatomic ML-mW model of the intermolecular interaction potential. The calculated spectra of longitudinal  and transverse  currents reveal the presence of propagating collective excitations of longitudinal and transverse polarizations in amorphous ice for a wide range of wavenumbers. The region of mixing of longitudinal CL(k,ω) and transverse CT(k,ω) collective modes in low-density amorphous ice is established. It is shown that the temperature dependence of the gap width kgap in the dispersion law of transverse acoustic-like modes is described by a linear dependence.

Толық мәтін

Рұқсат жабық

Авторлар туралы

R. Khusnutdinoff

Казанский государственный энергетический университет

Хат алмасуға жауапты Автор.
Email: khrm@mail.ru
Ресей, Казань

Әдебиет тізімі

  1. Montfrooij W. and de Schepper I. Excitations in simple liquids, liquid metals and superfluids. New York: Oxford University Press, 2010.
  2. Pines D. Elementary excitations in solids. New York - Amsterdam: W.A. Benjamin Inc, 1963.
  3. Boon J.P., Yip S. Molecular Hydrodynamics. New York: McGraw-Hill, 1980.
  4. Boinovich L.B., Emelyanenko A.M. Forces due to dynamic structure in thin liquid films // Adv. Colloid Interf. Sci. 2002. V. 96. P. 37–58. https://doi.org/10.1016/s0001-8686(01)00074-4
  5. Френкель Я.И. Кинетическая теория жидкостей. Ленинград: Наука, 1975.
  6. Barrat J.-L. and Hansen J.-P. Basic concepts for simple and complex liquids. Cambridge: University Press, 2003.
  7. Balucani U. and Zoppi M. Dynamics of the liquid state. Oxford: Clarendon Press, 1994.
  8. Brazhkin V.V., Trachenko K. Collective excitations and thermodynamics of disordered state: New insights into an old problem // J. Phys. Chem. B. 2014. V. 118. P. 11417–11427. https://doi.org/10.1021/jp503647s
  9. Trachenko K., Brazhkin V.V. Collective modes and thermodynamics of the liquid state // Rep. Prog. Phys. 2016. V. 79. P. 016502. https://doi.org/ 10.1088/0034-4885/79/1/016502
  10. Хуснутдинов Р.М., Мокшин А.В. Атомарные коллективные возбуждения в жидком свинце // Письма в ЖЭТФ. 2014. Т. 100. С. 42. https://doi.org/10.7868/S0370274X14130086
  11. March N.H. Liquid metals: Concepts and theory. Cambridge: Cambridge University Press, 1990.
  12. Levesque D., Verlet L., Kurkijarvi J. Computer “experiments” on classical fluids. iv. transport properties and time-correlation functions of the Lennard-Jones liquid near its triple point // Phys. Rev. A. 1973. V. 7. P. 1690. https://doi.org/10.1103/PhysRevA.7.1690
  13. Hosokawa S., Munejiri S., Inui M., Kajihara Y., Pilgrim W.-C., Ohmasa Y., Tsutsui S., Baron A.Q.R., Shimojo F., Hoshino K. Transverse excitations in liquid Sn // J. Phys. Condens. Matter. 2013. V. 25. P. 112101. https://doi.org/10.1088/0953-8984/25/11/112101
  14. Hosokawa S., Munejiri S., Inui M., Kajihara Y., Pilgrim W.-C., Baron A.Q.R., Shimojo F., Hoshino K. Transverse excitations in liquid metals // AIP Conf. Proc. 2013. V. 1518. P. 695–702. https://doi.org/10.1063/1.4794661
  15. Hosokawa S., Inui M., Kajihara Y., Tsutsui S., Baron A.Q.R. Transverse excitations in liquid Fe, Cu and Zn // J. Phys.: Condens. Matter. 2015. V. 27. P. 194104. https://doi.org/10.1088/0953-8984/27/19/194104
  16. Rahman A., Stillinger F.H. Propagation of sound in water. A molecular-dynamics study // Phys. Rev. A. 1974. V. 10. P. 368. https://doi.org/10.1103/PhysRevA.10.368
  17. Sette F., Ruocco G., Krisch M., Masciovecchio C., Verbeni R., Bergmann U. Collective dynamics in water by high energy resolution inelastic X-Ray scattering // Phys. Rev. Lett. 1995. V. 75. P. 850. https://doi.org/10.1103/PhysRevLett.75.850
  18. Ricci M.A., Rocca D., Ruocco G., Vallauri R. Collective dynamical properties of liquid water // Phys. Rev. Lett. 1988. V. 61. P. 1958. https://doi.org/10.1103/PhysRevLett.61.1958
  19. Sastry S., Sciortino F., Stanley H.E. Collective excitations in liquid water at low frequency and large wave vector // J. Chem. Phys. 1991. V. 95. P. 7775–7776. https://doi.org/10.1063/1.461354
  20. Bertolini D., Tani A. Generalized hydrodynamics and the acoustic modes of water: Theory and simulation results // Phys. Rev. E. 1995. V. 51. P. 1091. https://doi.org/10.1103/PhysRevE.51.1091
  21. Petrillo C., Sacchetti F., Dorner B., Suck J.-B. High-resolution neutron scattering measurement of the dynamic structure factor of heavy water // Phys. Rev. E. 2000. V. 62. P. 3611. https://doi.org/10.1103/PhysRevE.62.3611
  22. Sacchetti F., Suck J.-B., Petrillo C., Dorner B. Brillouin neutron scattering in heavy water: Evidence for two-mode collective dynamics // Phys. Rev. E. 2004. V. 69. P. 061203. https://doi.org/10.1103/PhysRevE.69.061203
  23. Chan H., Cherukara M.J., Narayanan B., Loeffler T.D., Benmore C., Gray S.K., Sankaranarayanan S. Machine learning coarse grained models for water // Nat. Commun. 2019. V. 10. P. 379. https://doi.org/10.1038/s41467-018-08222-6
  24. Molinero V., Moore E.B. Water Modeled As an Intermediate Element between Carbon and Silicon // J. Phys. Chem. B. 2009. V. 113. P. 4008–4016. https://doi.org/10.1021/jp805227c
  25. Yunusov M.B., Khusnutdinoff R.M. Neural network model for predicting the atomization energy of multi-atomic molecules based on sorted Coulomb matrices // High Energy Chemistry. 2024. V. 58. P. S286. https://doi.org/10.1134/S0018143924701017
  26. Mallamace F., Corsaro C., Stanley H.E. Possible relation of water structural relaxation to water anomalies // PNAS. 2013. V. 110. P. 4899. https://doi.org/10.1073/pnas.1221805110
  27. Хуснутдинов Р.М. Микроскопическая коллективная динамика воды // Коллоид. журн. 2016. Т. 78. № 2. С. 208. https://doi.org/10.7868/S0023291216010092
  28. Guthrie M., Tulk C.A., Benmore C.J., Klug D.D. A structural study of very high-density amorphous ice // Chem. Phys. Lett. 2004. V. 397. P. 335. https://doi.org/10.1016/j.cplett.2004.07.116
  29. Хуснутдинов Р.М. Динамика сетки водородных связей при электрокристаллизации воды // Коллоид. журн. 2013. Т. 75. № 6. С. 792. https://doi.org/10.7868/s0023291213060062
  30. Хуснутдинов Р.М. Структурные и динамические особенности воды и аморфного льда // Коллоид. журн. 2017. Т. 79. № 1. С. 104. https://doi.org/10.7868/S0023291217010074
  31. Mishima O. Polyamorphism in water // Proc. Jpn. Acad., Ser. B. 2010. V. 86. P. 165. https://doi.org/10.2183/pjab.86.165

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Temperature dependences of density ρ, specific volume V, potential energy U and enthalpy H per molecule: solid lines are simulation results, symbols (○○○) are experimental data [26].

Жүктеу (339KB)
3. Fig. 2. Static structure factor for water and amorphous ice at different temperatures.

Жүктеу (144KB)
4. Fig. 3. Spectral densities of the VCF of longitudinal (L) and transverse (T) flows for low-density amorphous ice at a temperature of T = 200 K for the range of wavenumbers 0.56 Å-1 ≤ k ≤ 2.24 Å-1.

Жүктеу (233KB)
5. Fig. 4. Dispersions of collective excitations of longitudinal (a) and transverse (b) collective modes: the optical mode is marked with green symbols; longitudinal and transverse acoustic-like collective modes are marked with red, blue and lilac symbols. The region of mixing of longitudinal and transverse collective modes, which corresponds to the region of the left peak in the main maximum of the static structure factor S(k) (Fig. 2), is marked with dotted lines.

Жүктеу (223KB)
6. Fig. 5. Dispersion laws of longitudinal (a) and transverse (b) acoustic-like modes for water at different temperatures.

Жүктеу (476KB)
7. Fig. 6. Temperature dependence of the gap width in the dispersion law of transverse acoustic-like collective modes in water: the symbols represent the simulation results; the solid line is the results of interpolation by a linear dependence.

Жүктеу (123KB)

© Russian Academy of Sciences, 2025