Transformation of aqueous methyl methacrylate solution into stable monodisperse latex via polymerization initiated by hydroquinone–potassium persulfate system

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The aim of this work was to identify the possibilities of synthesizing stable latex with a narrow particle distribution by homogeneous polymerization in an aqueous solution of methyl methacrylate. The polymerization of methyl methacrylate was first carried out under static conditions in an aqueous solution of the hydroquinone–potassium persulfate oxidation-reduction system. It was assumed that semiquinone anion radicals formed at the intermediate stage of hydroquinone oxidation can participate in the reactions of termination of growing radicals and by changing the molecular parameters of polymer molecules, affect the process of formation of latex particles. The article presents the results of the study of the colloidal parameters of the obtained latex, which show that the selected polymerization conditions allow reproducibly synthesizing monodisperse stable latex.

Texto integral

Acesso é fechado

Sobre autores

A. Hovhannisyan

Scientific-Technological Center of Organic and Pharmaceutical Chemistry of the National Academy of Sciences of the Republic of Armenia

Autor responsável pela correspondência
Email: hovarnos@gmail.com
Armênia, 26, Azatutyunyan Ave., Yerevan, 0014

G. Grigoryan

Scientific-Technological Center of Organic and Pharmaceutical Chemistry of the National Academy of Sciences of the Republic of Armenia

Email: hovarnos@gmail.com
Armênia, 26, Azatutyunyan Ave., Yerevan, 0014

A. Nadaryan

Scientific-Technological Center of Organic and Pharmaceutical Chemistry of the National Academy of Sciences of the Republic of Armenia

Email: hovarnos@gmail.com
Armênia, 26, Azatutyunyan Ave., Yerevan, 0014

N. Grigoryan

Scientific-Technological Center of Organic and Pharmaceutical Chemistry of the National Academy of Sciences of the Republic of Armenia

Email: hovarnos@gmail.com
Armênia, 26, Azatutyunyan Ave., Yerevan, 0014

Bibliografia

  1. Grant T.D. Shouldice, Gerald A. Vandezande, Rudin A. Practical aspects of the emulsifier-free emulsion polymerization of styrene // Eur. Polym. J. 1994. V. 30. № 2. P. 179–183. https://doi.org/10.1016/0014-3057(94)90157-0
  2. Safinejad A., Pourmahdian S., Hadavand B.S. Emulsifier-free emulsion polymerization of acrylonitrile-butadiene-carboxylic acid monomers: a kinetic study based on polymerization pressure profile // J. Dispers. Sci. Technol. 2020. V. 41. № 2. P. 157–167. https://doi.org/10.1080/01932691.2018.1496835
  3. Chad E. Reese, Sanford A. Asher. Emulsifier-free emulsion polymerization produces highly charged, monodisperse particles for near infrared photonic crystals // J. Colloid Interface Sci. 2002. V. 248. № 1. P. 41–46. https://doi.org/10.1006/jcis.2001.8193
  4. Prokopov N.I., Gritskova I. A., Cherkasov V.R., Chalykh A.E. Synthesis of monodisperse functional polymer microspheres for immunological studies // Russ. Chem. Rev. 1996. V. 65. № 2. P. 167–180. https://doi.org/10.1070/RC1996v065n02ABEH000205
  5. Oganesyan A.A. Free-radical polymerization and phase formation in heterogeneous monomer/water systems, Doctoral (Chem.) Dissertation, Moscow: Moscow, Inst. of Fine Chemical Technology. 1986. (in Russ)
  6. Oganesyan A.A., Gukasyan A.V., Matsoyan S.G. Diffusion and polymerization of styrene in an aqueous solution of potassium persulfate under static conditions // Dokl. Phys. Chem. 1985. V. 281, № 4. P. 377. (in Russ)
  7. Oganesyan, A.A., Khaddazh, M., Gritskova, I.A. et al. Polymerization in the static heterogeneous system styrene-water in the presence of methanol // Theor. Found. Chem. Eng. 2013. V. 47 P. 600–603. https://doi.org/10.1134/S0040579513050230
  8. Nankai An, Xi Chen, Mingxin Zheng, Jinying Yuan. Colloidal crystals of monodisperse fluoro-nanoparticles by aqueous polymerization-induced self-assembly // Chem. Commun. 2023. V. 59. P. 7595–7598. https://doi.org/10.1039/D3CC01019H
  9. Zhong F., Pan C.-Y. Dispersion polymerization versus emulsifier-free emulsion polymerization for nano-object fabrication: A comprehensive comparison // Macromol. Rapid Commun. 2022. V. 43. № 3. P. 2100566. https://doi.org/10.1002/marc.202100566
  10. Peter A. Lovell, F. Joseph Schork. Fundamentals of emulsion polymerization // Biomacromolecules. 2020. V. 21. № 11. P. 4396–4441. https://doi.org/10.1021/acs.biomac.0c00769
  11. Шевченко Н.Н., Панкова Г.А., Шабсельс Б.М., Лаишевкина С.Г., Байгильдин В.А. Безэмульгаторная эмульсионная сополимеризация метилметакрилата как метод получения катионных частиц для диагностики вируса клещевого энцефалита // Коллоид. журн. 2020. Т. 82. № 2. С. 252–260.
  12. Menshikova A.Yu., Evseeva T.G., Peretolchin M.V., Chekina N.A., Ivanchev S.S. Emulsifier-free polymerization of methyl methacrylate with a carboxyl-containing initiator // Polym. Sci. A. 2001. V .43. № 4. P. 607–615.
  13. Троицкий Б.Б., Локтева А.А., Беганцова Ю.Е., Новикова М.А., Конев А.Н., Федюшкин И.Л. Получение наночастиц полиметилметакрилата диаметром 15–50 нм из латексных частиц субмикрометрового размера // Журнал Прикладной Химии. 2019. Т. 92. № 7. С. 875–880. https://doi.org/10.1134/S0044461819070089
  14. Walling Ch. Free radicals in solution. New York. Wiley. 1957.
  15. Dolgoplosk B.A. Tinyakova E.I. Generation of free radicals and their reactions. Moscow. Nauka, 1982.
  16. Guin P.S., Das S., Mandal P.C., Electrochemical reduction of quinones in different media: A review // Int. J. Electrochem. 2011. V. 2011. № 2. P. 816202.
  17. Додонов В. А., Гришин Д.Ф. Особенности полимеризации некоторых виниловых мономеров на элементоорганических инициаторах в присутствии гидрохинона // Высокомолекулярные соединения. Серия Б. 1993. Т. 35. № 1. С. 47–49.
  18. Robert M. Fitch, Michael B. Prenosil, Karen J. Sprick. The mechanism of particle formation in polymer hydrosols. I. Kinetics of aqueous polymerization of methyl methacrylate // J. Polym. Sci. Part C: Polym. Symp. 1969. V. 27. № 1. P. 95–118. https://doi.org/10.1002/polc.5070270109
  19. Fitch R.M., Tsai C.H. Polymer colloids particle formation in nonmicellar systems // J. Polym. Sci. Part B: Polym. Lett. 1970. V. 8. № 10. P. 703–710. https://doi.org/10.1002/pol.1970.110081007
  20. Fitch R.M. Latex particle nucleation and growth, in ACS Symposium Series, American Chemical Society: Washington, D.C. 1981. P. 1–29. https://doi.org/10.1021/bk-1981-0165.ch001
  21. Багдасаров Х.С., Гиваргизов Е.И., Демьянец Л.Н., Кузнецов В.А., Лабочев А.Н., Чернов А.А. Современная кристаллография. Том 3. Образование кристаллов. Москва: Наука. 1980.
  22. Moravec G. Macromolecules in solutions. M.: Mir. 1967.
  23. Frolov Yu.G. Course of colloid chemistry (Surface phenomena and disperse systems). M: Chemistry. 1982.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1

Baixar (262KB)
3. Fig. 1. Dynamics of turbidity change of MMA aqueous solution during polymerisation initiation by hydroquinone-PC redox system at temperatures of 40 and 25°C (tubes 1 and 2, respectively).

Baixar (56KB)
4. Fig. 2. Photograph of the aqueous MMA solution after 24 h of polymerisation. The temperature in tubes 1 and 2 is 25°C, in tube 3 - 40°C.

Baixar (120KB)
5. Fig. 3. Photograph of the aqueous MMA solution after 24 h of polymerisation at 60°C.

Baixar (151KB)
6. Fig. 4. Hydrodynamic diameter distribution pattern of latex particles synthesised in the presence of hydroquinone at different initial temperatures.

Baixar (156KB)
7. Fig. 5. Electron micrograph of latex obtained by homogeneous polymerisation of MMA in an aqueous solution of the hydroquinone-PC redox system.

Baixar (172KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025