Development of research on graphene-based nanofluids as heat carriers in direct absorption solar collectors

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

This study considers the potential application of graphene nanofluid as a heat transfer medium in direct absorption solar collectors. It is found that graphene nanofluid has superior absorption ability in interaction with monochromatic (520 nm) and near infrared radiation. The use of graphene nanofluid as working fluid compared to distilled water in the direct absorption solar collector increased its efficiency even at very low concentration of dispersed phase particles. However, in order to apply graphene nanofluid in energy systems as a working fluid, some issues need to be addressed, primarily related to its low stability and thermal instability.

全文:

受限制的访问

作者简介

Q. Tran

Moscow Power Engineering Institute

编辑信件的主要联系方式.
Email: tranqth.96@gmail.com
俄罗斯联邦, 14, Krasnokazarmennaya St., Moscow, 111250

I. Mikhailova

Moscow Power Engineering Institute

Email: tranqth.96@gmail.com
俄罗斯联邦, 14, Krasnokazarmennaya St., Moscow, 111250

I. Pavlov

Moscow Power Engineering Institute

Email: tranqth.96@gmail.com
俄罗斯联邦, 14, Krasnokazarmennaya St., Moscow, 111250

E. Ibragimova

Moscow Power Engineering Institute

Email: tranqth.96@gmail.com
俄罗斯联邦, 14, Krasnokazarmennaya St., Moscow, 111250

参考

  1. Sadeghi V., Baheri Islami S., Arsalani N. An experimental investigation of the effect of using non-Newtonian nanofluid-graphene oxide/aqueous solution of sodium carboxymethyl cellulose-on the performance of direct absorption solar collector // Scientia Iranica. 2020. V. 28. № 3. P. 1284–1297. https://doi.org/10.24200/SCI.2020.54994.4024
  2. Li Z., Kan A., Wang K., He Y., Zheng N., Yu W. Optical properties and photothermal conversion performances of graphene based nanofluids // Appl. Therm. Eng. 2022. V. 203. P. 117948. https://doi.org/10.1016/j.applthermaleng.2021.117948
  3. Cui L., Zhang P., Xiao Y., Liang Y., Liang H., Cheng Z., Qu L. High rate production of clean water based on the combined photo-electro-thermal effect of graphene architecture // Adv. Mater. 2018. V. 30. № 22. P. 1706805. https://doi.org/10.1002/adma.201706805
  4. Dmitriev A.S. Hybrid graphene nanocomposites: Thermal interface materials and functional energy materials // Graphene Production and Appl. IntechOpen. 2019. http://doi.org/10.5772/intechopen.89631
  5. Elsaid K., Abdelkareem M.A., Maghrabie H.M., Sayed E.T., Wilberforce T., Baroutaji A., Olabi A.G. Thermophysical properties of graphene-based nanofluids // Int. J. Thermofluids. 2021. V. 10. P. 100073. https://doi.org/10.1016/j.ijft.2021.100073
  6. Mei X., Sha X., Jing D., Ma L. Thermal conductivity and rheology of graphene oxide nanofluids and a modified predication model // Appl. Sci. 2022. V. 12. № 7. P. 3567. https://doi.org/10.3390/app12073567
  7. Ali I., Pakharukov Y.V., Shabiev F.K., et al. Preparation of graphene based nanofluids: Rheology determination and theoretical analysis of the molecular interactions of graphene nanoparticles // J. Mol. Liq. 2023. V. 390. P. 122954. https://doi.org/10.1016/j.molliq.2023.122954
  8. Morozova M.A., Novopashin S.A. Influence of interfacial phenomena on viscosity and thermal conductivity of nanofluids // Int. J. Heat Mass Transf. 2019. V. 7. № 2. P. 151–165. https://doi.org/10.1615/InterfacPhenomHeatTransfer.2019031015
  9. Serebryakova M.A., Zaikovskii A.V., Sakhapov S.Z., et al. Thermal conductivity of nanofluids based on hollow γ-Al2O3 nanoparticles, and the influence of interfacial thermal resistance // Int. J. Heat Mass Transf. 2017. V. 108. 1314–1319. https://doi.org/10.1016/j.ijheatmasstransfer.2016.12.098
  10. Balaji T., Mohan Lal D., Selvam C. A critical review on the thermal transport characteristics of graphene-based nanofluids // 2023. Energies. V. 16. № 6. P. 2663. https://doi.org/10.3390/en16062663
  11. Chen L., Xu C., Liu J., Fang X., Zhang Z. Optical absorption property and photo-thermal conversion performance of graphene oxide/water nanofluids with excellent dispersion stability // Sol. Energy. 2017. V. 148. P. 17–24. https://doi.org/10.1016/j.solener.2017.03.073
  12. Otanicar T.P., Phelan P.E., Prasher R.S., Rosengarten G., Taylor R.A. Nanofluid-based direct absorption solar collector // J. Renew. Sustainable Energy. 2010. V. 2. № 3. P. 033102. https://doi.org/10.1063/1.3429737
  13. Parvin S., Nasrin R., Alim M.A. Heat transfer and entropy generation through nanofluid filled direct absorption solar collector // Int. J. Heat Mass Transf. 2014. V. 71. P. 386–395. https://doi.org/10.1016/j.ijheatmasstransfer.2013.12.043
  14. Khalil A., Amjad M., Noor F., et al. Performance analysis of direct absorption-based parabolic trough solar collector using hybrid nanofluids // J. Braz. Soc. Mech. Sci. Eng. 2020. V. 42. P. 573. https://doi.org/10.1007/s40430-020-02654-2
  15. Zeiny A., Jin H., Bai L., Lin G., Wen D. A comparative study of direct absorption nanofluids for solar thermal applications // Sol. Energy. 2018. Vol. 161. P. 74–82. https://doi.org/10.1016/j.solener.2017.12.037
  16. Zheng N., Yan F., Wang L., Sun Z. Photo‐thermal conversion performance of mono MWCNT and hybrid MWCNT‐TiN nanofluids in direct absorption solar collectors // Int. J. Energy Res. 2022. V. 46. № 6. P. 8313–8327. https://doi.org/10.1002/er.7730
  17. Li Z., Kan A., Wang K., et al. Optical properties and photothermal conversion performances of graphene based nanofluids // Appl. Therm. Eng. 2021. V. 203. P. 117948. https://doi.org/10.1016/j.applthermaleng.2021.117948
  18. Tran Q.T., Mikhailova I.A., Mikhailov V.V., Makarov P.G. Influence of the spectral composition of solar radiation on the heating and evaporation processes of graphene nanofluids // Sol. Energy. 2024. V. 282. P. 112977. https://doi.org/10.1016/j.solener.2024.112977
  19. Sadeghinezhad E., Togun H., Mehrali M., Sadeghi Nejad P., Tahan Latibari S., Abdulrazzaq T., et al. An experimental and numerical investigation of heat transfer enhancement for graphene nanoplatelets nanofluids in turbulent flow conditions // Int. J. Heat Mass Transf. 2015. V. 81. P. 41–51. https://doi.org/10.1016/j.ijheatmasstransfer.2014.10.006
  20. Ghozatloo A., Rashidi A., Shariaty-Niassar M. Convective heat transfer enhancement of graphene nanofluids in shell and tube heat exchanger // Exp. Therm. Fluid Sci. 2014. V. 53. P. 136–141. https://doi.org/10.1016/j.expthermflusci.2013.11.018
  21. Дмитриев А.С., Клименко А.В. Преобразование солнечного излучения в пар – новые возможности на основе наноматериалов // Теплоэнергетика. 2020. № 2. C. 3–19. https://doi.org/10.1134/S0040363620020010
  22. Дмитриев А.С., Клименко А.В. Перспективы использования двумерных наноматериалов в энергетических технологиях // Теплоэнергетика. 2023. № 8. C. 3–26. https://doi.org/10.56304/S0040363623080015
  23. Nguyen T.T., Nguyen V.P., Phan H.K., et al. Carbon nanomaterial-based nanofluids for direct thermal solar absorption // Nanomaterials. 2020. V. 10. № 6. P. 1199. https://doi.org/10.3390/nano10061199
  24. Заварицкая Т.Н., Мельник Н.Н., Пудонин Ф.А., Шерстнев И.А. Многослойная графеновая структура углерода в короткопериодных сверхрешетках / // Письма в ЖЭТФ. 2016. Т. 103. № 5. С. 385–388. https://doi.org/10.7868/S0370274X16050106
  25. Цветков Ф.Ф. Задачник по тепломассообмену: учебное пособие / Ф.Ф. Цветков, Р.В. Керимов, В.И. Величко. 2-е изд., исправ. и доп. М.: Издательский дом МЭИ. 2008. 196 с., ил.
  26. Chan K.T., Dmitriev A.S., Mikhailova I.A., Makarov P.G. Study of heating and evaporation of rotating graphene nanofluid under the influence of solar radiation // Therm. Eng. 2024. V. 71. P. 452–464. https://doi.org/10.1134/S0040601524050045
  27. Фальковский Л.А. Оптические свойства графена и полупроводников типа A4B6 // Успехи физических наук. 2008. Т. 178. № 9. С. 923–934. https://doi.org/10.3367/UFNr.0178.200809b.0923

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1

下载 (308KB)
3. Fig. 1. SEM photograph of the graphene flakes.

下载 (539KB)
4. Fig. 2. XRD spectra of graphene flake samples and their comparison with the XRD spectra of graphite and single-layer graphene (a). Frequency region of the second order spectra (b).

下载 (228KB)
5. Fig. 3. AFM image (a) and height profile (b) of graphene flakes.

下载 (185KB)
6. Fig. 4. Dependence of transmission spectra (a) and integral extinction coefficient of GNF at different mass concentrations (b).

下载 (162KB)
7. Fig. 5. Experimental setup for studying the interaction of GNF with monochromatic radiation: 1 - vessel for nanofluids placement; 2 - radiation source; 3 - thermocouples; 4 - TRM138 meter-regulator; 5 - air temperature and humidity sensor; 6 - AC4-M transducer; 7 - computer.

下载 (60KB)
8. Fig. 6. Schematic diagram of the installation with direct absorption solar collector (a). Cross-section of a direct absorption solar collector (b): 1 - Direct absorption solar collector; 2 - thermocouples; 3 - pressure sensors; 4 - flow meter; 5 - circulation pump; 6 - liquid storage tanks; 7 - valve; 8 - regulator-measurer TRM-138; 9 - sensor OVEN PVT10; 10 - converter AC4-M; 11 - computer; 12 - glass tube; 13 - heat-insulating plate of extruded polystyrene foam; 14 - transparent protective coating.

下载 (257KB)
9. Fig. 7. Effect of monochromatic radiation on the heating process of GNF during direct interaction (solid lines refer to GNF, dotted lines to distilled water, colour represents the wavelength with which GNF interacts: blue - 450 nm, green - 520 nm, red - 638 nm, black - 808 nm).

下载 (164KB)
10. Fig. 8. Temperature distribution along the depth of the GNF column in the region near the 520 nm (a) and 808 nm (b) laser pass line.

下载 (144KB)
11. Fig. 9. Experimental results of measuring the GNF heating process in DASC under solar irradiation.

下载 (481KB)
12. Fig. 10. Effect of graphene flakes concentration on DASC efficiency (a). Adhesion of graphene flakes to the walls of silicone and glass tubes (b).

下载 (205KB)
13. Fig. 11. Effect of heating process on the transmittance of GNF 0.1%: 1 - without heat treatment; 2 - after prolonged heat treatment. Change in the structure of graphene flakes under the influence of thermal and mechanical treatment (b).

下载 (154KB)

版权所有 © Russian Academy of Sciences, 2025