Investigation of interfacial processes between oil and well stimulation fluids under different contact conditions

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

One of the practical challenges in the oil and gas industry is the formation of acid-oil emulsions and asphaltene sludge when well stimulation fluids come into contact with oil. The key to solving these problems lies in understanding the processes at the interface between oil and these agents, which is the focus of this study. The research investigates the processes occurring between sensitive oil and two types of stimulation fluids based on hydrochloric acid and ethylenediaminetetraacetic acid (EDTA) with and without the addition of a surfactant. Three methods are employed: simple mixing («bottle test»), simultaneous flow of fluids in a capillary, and simultaneous flow of fluids in a micromodel simulating a porous medium. Using simple mixing, it is shown that adding a surfactant to 15% hydrochloric acid can prevent sludge formation but does not prevent emulsion formation. Additionally, it is found that EDTA-based compositions with a neutral pH are compatible even with sensitive oil. Simultaneous flow experiments demonstrate the role of capillary walls in creating sludge and the cleaning ability of the chelating agent. Simultaneous flow in the micromodel highlights the distinctive features of hydrochloric acid compared to the chelate discrete flow, emulsion formation in the near-wall layer, and precipitate formation on pore walls. The results of this study can be useful both for further fundamental research into colloidal-chemical processes in oil reservoirs and for practical applications.

全文:

受限制的访问

作者简介

T. Yunusov

Gubkin Russian State University of Oil and Gas; Skolkovo Institute of Science and Technology

编辑信件的主要联系方式.
Email: Davletshina.l@gubkin.ru
俄罗斯联邦, 65, Leninsky Ave., Moscow, 119991; Bldg. 1, 30, Bolshoy Blvd., Moscow, 121205

L. Davletshina

Gubkin Russian State University of Oil and Gas

Email: Davletshina.l@gubkin.ru
俄罗斯联邦, 65, Leninsky Ave., Moscow, 119991

参考

  1. Смирнов А.С., Федоров К.М., Шевелев А.П. О моделировании кислотного воздействия на карбонатный пласт // Механика жидкости и газа. 2010. № 5. С. 114–122.
  2. Кремлева Т.А., Смирнов А.С., Федоров К.М. Моделирование процесса кислотной обработки карбонатных пластов с учетом эффекта образования каналов-червоточин // Механика жидкости и газа. 2011. № 5. С. 76–84.
  3. Юсупова Т.Н., Ганеева Ю.М., Романов Г.В., Барская Е.Е. Физико-химические процессы в продуктивных нефтяных пластах. Москва: Наука. 2015. C. 8–9.
  4. Туманян Б.П. Научные и прикладные аспекты теории нефтяных дисперсных систем. М.: Издательство «Техника». 2000. С. 44–57.
  5. Мухаметзянов И.З., Кузеев И.Р., Воронов, В.Г., Спивак С.И. Структурная организация нефтяных дисперсных систем // Доклады Академии Наук. 2002. Т. 387. № 3. С. 353–356.
  6. Noruzi Y., et al. The State-of-the-Art of wettability alteration in sandstones and Carbonates: A mechanistic review // Fuel. 2024. V. 356. P. 129570. https://doi.org/10.1016/j.fuel.2023.129570
  7. Deng X., et al. A review on wettability alteration in carbonate rocks: Wettability modifiers // Energy Fuels. 2020. V. 34. № 1. С. 31–54. https://doi.org/10.1021/acs.energyfuels.9b03409
  8. Хамидуллина Ф.Ф., Газизов А.А. Об изменении физико-химических свойств добываемой продукции нефтяных скважин в процессе разработки на некоторых площадях Ромашкинского месторождения // Вестник Казанского технологического университета. 2012. Т. 12. С. 193–195.
  9. Овсянникова В.С., Савиных Ю.В., Алтунина Л.К. Изменение состава нефти и воды при пароизоляции гелеобразующей композицией ГАЛКА® в горизонтальной скважине, разрабатываемой методом термогравитационного дренирования //Химия в интересах устойчивого развития. 2021. Т. 29. № 2. С. 171–176. https://doi.org/10.15372/KhUR2021292
  10. Ali S.I., Shaine M.L., Javed H., Muhammad A.K., Clifford L. Комплексный анализ показателей устойчивости асфальтенов в разных условиях // Нефтехимия. 2021. V. 61. № 3. С. 337–346. https://doi.org/10.31857/S0028242121030059
  11. Gmachowski L., Paczuski M. Modeling of asphaltene aggregates structure and deposition // Colloids Surf. A: Physicochem. Eng. Asp. 2015. V. 484. P. 402–407. https://doi.org/10.1016/j.colsurfa.2015.08.021
  12. Duffy T.S., et al. Experimentation and modeling of surface chemistry of the silica-water interface for low salinity waterflooding at elevated temperatures // Colloids Surf. A: Physicochem. Eng. Asp. 2019. V. 570. P. 233–243. https://doi.org/10.1016/j.colsurfa.2019.03.007
  13. Perazzo A., Tomaiuolo G., Preziosi V., Guido S. Emulsions in porous media: From single droplet behavior to applications for oil recovery // Adv. Colloid Interface Sci. 2018. V. 256. P. 305–325. https://doi.org/10.1016/j.cis.2018.03.002
  14. Abdollahi R., Shadizadeh S.R. The effect of spent acid on carbonate rock wettability during a matrix acidizing treatment // Pet. Sci. Technol. 2014. V. 32. № 4. P. 450–454. https://doi.org/10.1080/10916466.2011.590841
  15. Солодовников А.О., Киселев К.В., Андреев О.В. Исследование межфазного натяжения на границе нефть-кислотный раствор в присутствии поверхностно-активных веществ // Вестник Тюменского государственного университета. Экология и природопользование. 2013. Т. 5. С. 148–155.
  16. Насыйрова А.М., Куряшов Д.А., Башкирцева Н.Ю., Идрисов А.Р. Повышение эффективности солянокислотных обработок нефтяных скважин в карбонатных коллекторах // Вестник Казанского технологического университета. 2013. Т. 6. № 8. С. 290–292.
  17. Silin M.A., et al. Complex study of acid-in-oil emulsions, their formation, stabilization and breakdown // J. Dispers. Sci. Technol. 2024. V. 44. № 9. P. 1628–1636. https://doi.org/10.1080/01932691.2022.2032133
  18. Abbasi A., Malayeri M.R., Shirazi M.M. Stability of spent HCl acid-crude oil emulsion // J. Mol. Liq. 2023. V. 383. P. 122116. https://doi.org/10.1016/j.molliq.2023.122116
  19. Рыбаков А.А., Зимин В.Д., Садыков Н.Н. Спектрофотометрия как метод подбора кислотных составов для интенсификации добычи // Нефтяная провинция. 2020. Т. 2. № 22. С. 95–105. https://doi.org/10.25689/NP.2020.2.95-105
  20. Магадова Л.А., Давлетов З.Р., Давлетшина Л.Ф., Пахомов М.Д. Исследование процессов образования эмульсий и осадков при взаимодействии фторсодержащих составов с нефтями // Технологии нефти и газа. 2016. Т. 106. № 5. С. 11–15.
  21. Rietjens M., Nieuwpoort M. Acid-sludge: How small particles can make a big impact // Materials of SPE European Formation Damage Control Conference, Hague, Netherlands. 1999. P. 211–224. https://doi.org/10.2118/54727-MS
  22. Kalhori P., et al. Impact of crude oil components on acid sludge formation during well acidizing // JPSE. 2022. V. 215. P. 110698. https://doi.org/10.1016/j.petrol.2022.110698
  23. Pourakaberian A., et al. A systematic study of asphaltic sludge and emulsion formation damage during acidizing process: Experimental and modeling approach // JPSE. 2021. V. 207. P. 109073. https://doi.org/10.1016/j.petrol.2021.109073
  24. Mohammadi S., Shahbazi K. A comprehensive review on acid-induced sludge formation during matrix acidizing: Nature, mechanism, and effective parameters // Geoenergy Sci. Eng. 2023. V. 229. P. 212150. https://doi.org/10.1016/j.geoen.2023.212150
  25. O’Neil B., Maley D., Lalchan C. Prevention of acid-induced asphaltene precipitation: A comparison of anionic vs. cationic surfactants // J. Can. Pet. Technol. 2015. V. 54. № 1. P. 49–62. https://doi.org/10.2118/164087-PA
  26. Kharisov R.Y., et al. Integrated approach to acid treatment optimization in carbonate reservoirs // Energy Fuels. 2012. V. 26. № 5. P. 2621–2630. https://doi.org/10.1021/ef201388p
  27. Yunusov T.I., et al. Study of wettability alteration of hydrophobic carbonate rock by surfactant-containing chelating agent solutions // Appl. Sci. 2023. V. 13. № 17. P. 9664. https://doi.org/10.3390/app13179664
  28. Yunusov T.I., et al. Study of chelating agent–surfactant interactions on the interphase as possibly useful for the well stimulation // Energies. 2023. V. 16. № 4. P. 1679. https://doi.org/10.3390/en16041679
  29. Давлетшина Л.Ф., Михайлова П.С., Акзигитов Е.А. Особенности поведения нефтей одного месторождения при подборе кислотных составов для обработки терригенных коллекторов // Труды РГУ нефти и газа (НИУ) имени И.М. Губкина. 2017. Т. 287. № 2. С. 153–162.
  30. Михайлов Н.Н., Ермилов О.М., Сечина Л.С. Изменение смачиваемости пород-коллекторов при адсорбции асфальтенов на внутрипоровой поверхности // Актуальные проблемы нефти и газа. 2021. Т. 32. № 1. С. 3–15. https://doi.org/10.29222/ipng.2078-5712.2021-32.art1
  31. Rao A., et al. Formation and stability of heterogeneous organo-ionic surface layers on geological carbonates // Energy Fuels. 2022. V. 36. № 14. P. 7414–7433. https://doi.org/10.1021/acs.energyfuels.2c01117
  32. Ganeeva Y.M., et al. The composition of acid/oil interface in acid oil emulsions // Pet. Sci. 2020. V. 17. № 5. P. 1345–1355. https://doi.org/10.1007/s12182-020-00447-9
  33. Mohammadzadeh H., et al. Pore-scale study of the effects of DTPA chelating agent flooding on oil recovery utilizing a clay-coated micromodel // Petroleum Research. 2024. V. 9. № 2. P. 228–237. https://doi.org/10.1016/j.ptlrs.2023.11.001
  34. Son Y. Determination of shear viscosity and shear rate from pressure drop and flow rate relationship in a rectangular channel // Polymer. 2007. V. 48. № 2. P. 632–637. https://doi.org/10.1016/j.polymer.2006.11.048
  35. Liu M., Zhang S., Mou J. Fractal nature of acid-etched wormholes and the influence of acid type on wormholes // PED. 2012. V. 39. № 5. P. 630–635. https://doi.org/10.1016/S1876-3804(12)60086-X
  36. Евдокимов И.Н., Лосев А.П., Могильниченко М.А. Самопроизвольное образование аномально вязких нефтекислотных эмульсий в призабойной зоне скважины // Бурение и нефть. 2017. № 7–8. C. 54–59.
  37. Duboué J., et al. Auto-emulsification of water at the crude oil/water interface: a mechanism driven by osmotic gradient // Energy Fuels. 2019. V. 33. № 8. P. 7020–7027. https://doi.org/10.1021/acs.energyfuels.9b00946
  38. Mirkhoshhal S.M., et al. Pore-scale insights into sludge formation damage during acid stimulation and its underlying mechanisms // JPSE. 2021. V. 196. P. 107679. https://doi.org/10.1016/j.petrol.2020.107679
  39. Магадова Л.А., Давлетшина Л.Ф., Губанов В.Б., Михайлова П.С., Власова В.Д. Исследование особенностей взаимодействия нефти и кислотных систем в условиях пористой среды // Труды РГУ нефти и газа имени И.М. Губкина. 2017. Т. 4. № 289. С. 132–142.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1

下载 (141KB)
3. Fig. 1. The micromodel used: (a) schematic, (b) photograph.

下载 (141KB)
4. Fig. 2. Photograph of the investigated sludge: (a) on the sieve, (b) microphotograph in a thin layer, individual particles are marked in red.

下载 (584KB)
5. Fig. 3. Mechanism of formation of surfactant-oil-acid emulsion: (a) dispersion of acid droplets in the oil phase; (b) destabilisation of surfactants on the interphase surface and parallel diffusion of surfactants to it; (c) formation of surface - surfactant-coagulated surfactants; (d) formation of stable emulsion.

下载 (280KB)
6. Fig. 4. Flow of 15% HCl in a capillary: (a) particles found at the outlet; (b) oil washing from the capillary walls with sediment formation; (c) sediment after washing the capillary with cyclohexane.

下载 (292KB)
7. Fig. 5. Filtration of 15% HCl through a micromodel: (a) flow of acid droplets (indicated in red); (b) wall trapping of acid by oil (indicated in green); (c) sludge formation after washing with cyclohexane (indicated in blue).

下载 (333KB)
8. Fig. 6. Filtration of 15% HCl with surfactant through a micromodel: (a) flow of acid droplets (indicated in red); (b) thickness of oil films on the walls (indicated in green); (c) sludge formation after washing with cyclohexane (indicated in blue).

下载 (439KB)
9. Fig. 7. Filtration of the chelate composition through the micromodel: (a) continuous flow of the composition; (b) after filtration of the chelate composition without surfactant; (c) after filtration of the chelate composition with surfactant.

下载 (374KB)

版权所有 © Russian Academy of Sciences, 2025