Phylogenetic relationships of the north eurasian Daedaleopsis species

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The phylogenetic analysis of three morphospecies from the genus Daedaleopsis: D. confragosa, D. septentrionalis, D. tricolor – are presented and discussed. It is shown that the sequences of the ITS region of rDNA from the basidiocarps of D. confragosa, D. tricolor and D. septentrionalis from the Urals, Siberia and the Far East form one cluster on the phylogenetic tree. The levels of nucleotide similarity between morphospecies are 98.95–99.29% and are within their intragroup values (98.65–99.44%). The nucleotide divergence (Dxy) between the sequences of morphospecies (0.69–1.08%) also does not exceed their nucleotide diversity (π): 0.52–1.34%. Neither the level of nucleotide divergence nor the level of nucleotide similarity of the ITS rDNA region sequences of D. confragosa, D. tricolor and D. septentrionalis do not reach the level necessary for distinguishing them as separate species: 3 and 97%, respectively. Taking this into account, as well as the sympatric nature of the distribution of D. confragosa, D. tricolor and D. septentrionalis, they should be considered as three morphological varieties of D. confragosa. From an ecological point of view, they are three ecotypes, one of which (D. confragosa var. confragosa) is confined to azonal biotopes, and two are latitudinal ecotypes: northern boreal (D. confragosa var. septentrionalis) and southern boreal one (D. confragosa var. tricolor).

Негізгі сөздер

Толық мәтін

Рұқсат жабық

Авторлар туралы

V. Vladykina

Department of Biodiversity and Bioecology, Ural Federal University

Хат алмасуға жауапты Автор.
Email: viktoria.yambusheva@urfu.ru
Ресей, Ekaterinburg

D. Diyarova

Institute of Plant and Animal Ecology of Ural Branch of Russian Academy of Sciences

Email: dasha_d@ipae.uran.ru
Ресей, Ekaterinburg

E. Zhuykova

Institute of Plant and Animal Ecology of Ural Branch of Russian Academy of Sciences

Email: e.zhuykova@list.ru
Ресей, Ekaterinburg

V. Mukhin

Institute of Plant and Animal Ecology of Ural Branch of Russian Academy of Sciences

Email: victor.mukhin@ipae.uran.ru
Ресей, Ekaterinburg

Әдебиет тізімі

  1. Avise J.C., Wollenberg K. Phylogenetics and the origin of species. PNAS. 1997. V. 94 (15). P. 7748–7755. https://doi.org/10.1073/pnas.94.15.7748
  2. Berrin J.G., Navarro D., Couturier M. et al. Exploring the natural fungal biodiversity of tropical and temperate forests toward improvement of biomass conversion. Appl. Environm. Microbiol. 2012. V. 78 (18). P. 6483–6490. https://doi.org/10.1128/AEM.01651-12
  3. Biological encyclopedic dictionary. Sovetskaya entsiklopediya, Moscow, 1986. (In Russ.)
  4. BLAST (Basic Local Alignment Search Tool). NCBI: National Center for Biotechnology Information. https://blast.ncbi.nlm.nih.gov/Blast.cgi. Accessed 21.10.2024.
  5. Bobay L.-M., Ochman H. Biological species are universal across life’s domains. Genome Biol. Evol. 2017. V. 9 (3). P. 491–501. https://doi.org/10.1093/gbe/evx026
  6. Bolshakov S. Yu., Volobuev S.V., Ezhov O.N. et al. Aphyllophoroid fungi of the European part of Russia: a checklist. ETU Publishing house, SPb., 2022. (In Russ.)
  7. Bondartsev A.S. Polyporaceae of the European part of the USSR and the Caucasus. Publishing house of the Academy of Sciences of USSR, Moscow, Leningrad, 1953. (In Russ.)
  8. Bondartseva M.A. Definitorium fungorum Rossiae. Ordo Aphyllophorales. Fasc. 2. Familiae Albatrellaceae, Aporpiaceae, Boletopsidaceae, Bondarzewiaceae, Corticiaceae (genera tubuliferae), Fistulinaceae, Ganodermataceae, Lachnocladiaceae (genus tubiliferus), Phaeolaceae, Polyporaceae (genera tubuliferae), Poriaceae, Rigidoporaceae. Nauka, SPb., 1998. (In Russ.)
  9. Cohan F.M. What are Bacterial Species? Ann. Rev. Microbiol. 2002. V. 56 (1). P. 457–487. https://doi.org/10.1146/annurev.micro.56.012302.160634
  10. Coyne J.A., Orr H.A. Speciation. Sinauer Assoc., Sunderland, 2004.
  11. Galović V., Marković M., Pap P. et al. Molecular taxonomy and phylogenetics of Daedaleopsis confragosa (Bolt.: Fr.) J. Schröt. from wild cherry in Serbia. Genetika. 2018. V. 50 (2). P. 519–532. https://doi.org/10.2298/GENSR1802519G
  12. Gardes M., Bruns T.D. ITS primers with enhanced specificity for Basidiomycetes – application to the identification of mycorrhizae and rusts. Mol. Ecol. 1993. V. 2. P. 113–118. https://doi.org/10.1111/j.1365-294x.1993.tb00005.x
  13. GenBank. National Library of Medicine. http://www.ncbi.nlm.nih.gov/genbank. Accessed 21.10.2024
  14. Index Fungorum. CABI database. 2024. http://www.indexfungorum.org. Accessed 01.10.2024
  15. Izzo A.D., Agbowo J., Bruns T.D. Detection of Plot-level changes in ectomycorrhizal communities in an old-growth mixed conifer forest. New Phytol. 2005. V. 166 (2). P. 619–629. https://doi.org/10.1111/j.1469-8137.2005.01354.x
  16. Jülich W. Basidiomyceten. Teil 1: Die Nichtblätterpilze, Gallertpilze und Bauchpilze. Gustav Fischer Verlag, Stuttgart, 1984.
  17. Justo A., Hibbett D. Phylogenetic classification of Trametes (Basidiomycota, Polyporales) based on a five-marker dataset. Taxon. 2011. V. 60 (6). P. 1567–1583. https://doi.org/10.1002/tax.606003
  18. Kimura M. A Simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Molec. Evol. 1980. V. 16 (2). P. 111–120. https://doi.org/10.1007/BF01731581
  19. Kõljalg U., Nilsson R.H., Abarenkov K. et al. Towards a unified paradigm for sequence-based identification of Fungi. Molec. Ecol. 2013. V. 22 (21). P. 5271–5277. https://doi.org/10.1111/mec.12481
  20. Koukol O., Kotlaba F., Pouzar Z. Taxonomic evaluation of the polypore Daedaleopsis tricolor based on morphology and molecular data. Czech Mycol. 2014. V. 66 (2). P. 107–119. https://doi.org/10.33585/cmy.66201
  21. Krüger D., Hughes K.W., Petersen R.H. Studies in Polyporus subgenus Polyporellus. In: Root and butt rots of forest trees, 10th International IUFRO conference on root and butt rots. Québec City, 2002, pp. 14–23.
  22. Kumar S., Stecher G., Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molec. Biol. Evol. 2016. V. 33 (7). P. 1870–1874. https://doi.org/10.1093/molbev/msw054
  23. Li H.-J., Si J., He S.-H. Daedaleopsis hainanensis sp. nov. (Polyporaceae, Basidiomycota) from tropical China based on morphological and molecular evidence. Phytotaxa. 2016. V. 275 (3). Art. 294. https://doi.org/10.11646/phytotaxa.275.3.7
  24. Lowe J.L. Type studies of the polypores described by Karsten. Mycologia. 1956. V. 48 (1). P. 99–125. https://doi.org/10.2307/3755782
  25. Matute D.R., Sepúlveda V.E. Fungal species boundaries in the genomics era. Fungal Genetics Biol. 2019. V. 131. Art. 103249. https://doi.org/10.1016/j.fgb.2019.103249
  26. Mentrida S., Krisai-Greilhuber I., Voglmayr H. Molecular evaluation of species delimitation and barcoding of Daedaleopsis confragosa Specimens in Austria. Österreichische Zeitschr. Pilzk. 2015. V. 24. P. 173–179.
  27. Mukhin V.A., Vladykina V.D., Diyarova D.K. Temperature dynamics of growth, CO2 gas exchange and competitiveness of Daedaleopsis confragosa and D. tricolor. Mikologiya i fitopatologiya. 2023. V. 57 (1). P. 42–47. (In Russ.) https://doi.org/10.31857/S0026364823010105
  28. Multiple Sequence Alignment. EMBL-EBI. https://www.ebi.ac.uk/jdispatcher/msa. Accessed 21.10.2024.
  29. Niemelä T. Taxonomic notes on the polypore genera Antrodiella, Daedaleopsis, Fibuloporia and Phellinus. Karstenia. 1982. V. 22. P. 11–12.
  30. Nilsson R.H., Kristiansson E., Ryberg M. et al. Intraspecific ITS variability in the kingdom Fungi as expressed in the international sequence databases and its implications for molecular species identification. Evolutionary Bioinformatics. 2008. V. 4. P. 193–201. https://doi.org/10.4137/ebo.s653
  31. Nosil P. Ecological speciation 1. Oxford University Press, Oxford, 2012.
  32. Park J.-H., Pavlov I.N., Kim M.-J. et al. Investigating wood decaying fungi diversity in Central Siberia, Russia using ITS sequence analysis and interaction with host trees. Sustainability. 2020. V. 12 (6). Art. 2535. https://doi.org/10.3390/su12062535
  33. Rozas J., Ferrer-Mata A., Sánchez-DelBarrio J.C. et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Molec. Biol. Evol. 2017. V. 34 (12). P. 3299–3302. https://doi.org/10.1093/molbev/msx248
  34. Ryvarden L. The Polyporaceae of North Europe. Fungiflora, Oslo, 1976.
  35. Ryvarden L., Gilbertson R.L. European polypores. Pt 1: Abortiporus – Lindtneria. Fungiflora, Oslo, 1993.
  36. Ryvarden L., Melo I. Poroid fungi of Europe. Fungiflora, Oslo, 2014.
  37. Schmidt O., Gaiser O., Dujesiefken D. Molecular identification of decay fungi in the wood of urban trees. Eur. J. Forest Res. 2012. V. 131. P. 885–891. https://doi.org/10.1007/s10342-011-0562-9
  38. Schoch C.L., Seifert K.A., Huhndorf S. et al. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. PNAS. 2012. V. 109 (16). P. 6241–6246. https://doi.org/10.1073/pnas.1117018109
  39. Sinskaya E.N. Problems of population botany. Ekaterinburg, 2002. (In Russ.)
  40. Smith M.E., Douhan G.W., Rizzo D.M. Intra-specific and intra-sporocarp ITS variation of ectomycorrhizal fungi as assessed by rDNA sequencing of sporocarps and pooled ectomycorrhizal roots from a Quercus. Mycorrhiza. 2007. V. 18 (1). P. 15–22. https://doi.org/10.1007/s00572-007-0148-z
  41. Sobel J.M., Chen G.F., Watt L.R. et al. The biology of speciation. Evolution. 2010. V. 64 (2). P. 295–315. https://doi.org/10.1111/j.1558-5646.2009.00877.x
  42. Soskov Yu.D., Kochegina A.A. Charles Darwin’s divergence scheme as the basis of biological laws. In: Charles Darwin and modern biology: International Scientific Conference. SPb., 2010, pp. 311–320. (In Russ.)
  43. Stengel A., Stanke K.M., Quattrone A.C. et al. Improving taxonomic delimitation of fungal species in the age of genomics and phenomics. Frontiers Microbiol. 2022. V. 13. Art. 847067. https://doi.org/10.3389/fmicb.2022.847067
  44. Taylor J., Hibbett D. Toward sequence-based classification of Fungi. IMA Fungus. 2013. V. 4. P. A33–A34. https://doi.org/10.1007/BF03449308
  45. Vladykina V.D., Mukhin V.A., Badalyan S.M. Daedaleopsis genus in Siberia and the Far East of Russia. In: ARPHA Proc. “Information Technology in Biodiversity Research”. 2020, pp. 17–26. https://doi.org/10.3897/ap.2.e58134
  46. Walker J.F., Miller O.K., Horton J.L. Seasonal dynamics of ectomycorrhizal fungi assemblages on oak seedlings in the southeastern Appalachian Mountains. Mycorrhiza. 2008. V. 18 (3). P. 123–132. https://doi.org/10.1007/s00572-008-0163-8
  47. Welti S., Moreau P.-A., Favel A. et al. Molecular phylogeny of Trametes and related genera, and description of a new genus Leiotrametes. Fungal Diversity. 2012. V. 55. P. 47–64. https://doi.org/10.1007/s13225-011-0149-2
  48. Zmitrovich I.V. Phylogenesis and agaptatiogenesis of polyporaceous fungi (family Polyporaceae s.str.). Dr. Sci. Thesis. SPb., 2017. (In Russ.)
  49. Биологический энциклопедический словарь (Biological) М.С. Гиляров (ред.). М.: Советская энциклопедия, 1986. 831 с.
  50. Большаков С.Ю., Волобуев С.В., Ежов О.Н. и др. (Bolsha-kov et al.) Афиллофороидные грибы европейской части России: аннотированный список видов. СПб., Изд-во СПбГЭТУ “ЛЭТИ”, 2022. 578 с.
  51. Бондарцев А.С. (Bondartsev) Трутовые грибы европейской части СССР и Кавказа. М.; Л.: Изд-во АН СССР, 1953. 1106 с.
  52. Бондарцева М.А. (Bondartseva) Определитель грибов России. Порядок Афиллофоровые. Вып. 2. СПб.: Наука, 1998. 391 с.
  53. Змитрович И.В. (Zmitrovich) Филогенез и адаптациогенез полипоровых грибов (семейство Polyporaceae s. str.). Дисс. … докт. биол. наук. СПб.: БИН РАН, 2017. 364 с.
  54. Мухин В.А., Владыкина В.Д., Диярова Д.К. (Mukhin et al.) Температурная динамика роста, газообмена СО2 и конкурентоспособности Daedaleopsis confragosa и D. tricolor // Микология и фитопатология. 2023. Т. 57. № 1. С. 42–47.
  55. Синская Е.Н. (Sinskaya) Проблемы популяционной ботаники. Екатеринбург: УрО РАН, 2002. 194 с.
  56. Сосков Ю.Д., Кочегина А.А. (Soskov, Kochegina) Схема дивергенции Чарльза Дарвина как основа биологических законов // Чарльз Дарвин и современная биология: Труды Международной научной конференции. СПб., 2010. С. 311–320.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Morphotypes of Daedaleopsis confragosa: a – “D. confragosa” (MN636243); b – “D. tricolor” (OK055705); c – “D. septentrionalis” (OK055710). The Genbank accession number is given in brackets.

Жүктеу (527KB)
3. Fig. 2. Phylogenetic ML tree of original (bold) ITS rDNA sequences of Daedaleopsis fungi from the Asian part of Russia, Belarus (1), as well as reference and outgroup. Bootstrap support (1000 repetitions) above 60 is shown near the nodes.

Жүктеу (599KB)

© Russian Academy of Sciences, 2025