Биологические основы защиты растений от инфицирования спорыньей
- Авторы: Волнин А.А.1, Цыбулько Н.С.1, Бохан А.И.1
-
Учреждения:
- Всероссийский научно-исследовательский институт лекарственных и ароматических растений
- Выпуск: Том 59, № 3 (2025)
- Страницы: 185-197
- Раздел: ОБЗОРЫ И ДИСКУССИИ
- URL: https://ruspoj.com/0026-3648/article/view/685841
- DOI: https://doi.org/10.31857/S0026364825030017
- EDN: https://elibrary.ru/awkuav
- ID: 685841
Цитировать
Аннотация
Спорынья ежегодно наносит значительные экономические убытки в растениеводстве, животноводстве и пищевой промышленности по всему миру. В настоящее время нет ни одного способа, обеспечивающего полную защиту растений от инфицирования этим патогеном, либо полной очистки сельскохозяйственной продукции от соответствующих микотоксинов. В данном обзоре были рассмотрены наиболее актуальные тенденции борьбы со спорыньей, такие как менеджмент посевных площадей, лугов и пастбищ, применение фунгицидов, детоксификация продукции, а также селекция, направленная на устойчивость растений и снижение частоты инфекций, связанных с контролем цитоплазматической мужской стерильности и восстановлением фертильности. Эффективный менеджмент в области растениеводства и обеспечения качества готовой продукции является самым используемым и надежным методом на сегодняшний день. Детоксификация продукции и применение фунгицидов требуют дополнительных исследований и могут применяться только в сочетании с каким-то другим методом. Селекция на устойчивость и восстановление фертильности является многообещающей в будущем. На наш взгляд, самым перспективным на данном этапе является сочетание сразу нескольких методов защиты растений и контроля качества продукции. Комплексный подход к решению этой проблемы может максимально обезопасить человека и домашних животных от токсического воздействия спорыньи.
Полный текст

Об авторах
А. А. Волнин
Всероссийский научно-исследовательский институт лекарственных и ароматических растений
Автор, ответственный за переписку.
Email: volnin.а@mail.ru
Россия, Москва
Н. С. Цыбулько
Всероссийский научно-исследовательский институт лекарственных и ароматических растений
Email: ostafevo11@yandex.ru
Россия, Москва
А. И. Бохан
Всероссийский научно-исследовательский институт лекарственных и ароматических растений
Email: alexboxan1980@mail.ru
Россия, Москва
Список литературы
- Agriopoulou S. Ergot alkaloids mycotoxins in cereals and cereal-derived food products: characteristics, toxicity, prevalence, and control strategies. Agronomy. 2021. V. 11 (5). P. 931. https://doi.org/10.3390/agronomy11050931
- Alaoufi S., Friskop A., Simsek S. Effect of field-applied fungicides on Claviceps purpurea sclerotia and Associated Toxins in Wheat. J. Food Prot. 2023. 86(3). 100046. https://doi.org/10.1016/j.jfp.2023.100046
- Alaoufi S.H. Survey of Claviceps purpurea and fusarium toxins in spring wheat and fungicide efficacy on ergot sclerotia, alkaloid content, and saprophytic Fusarium associated toxins. Doctoral thesis. North Dakota, 2022.
- Arroyo-Manzanares N., Rodríguez-Estévez V., García-Campaña A.M. et al. Determination of principal ergot alkaloids in swine feeding. J. Sci. Food and Agriculture. 2021. V. 101 (12). P. 5214–5224. https://doi.org/10.1002/jsfa.11169
- Ault-Seay T.B., Melchior-Tiffany E.A., Clemmons B.A. et al. Rumen and serum metabolomes in response to endophyte-infected tall fescue seed and isoflavone supplementation in beef steers. Toxins. 2020. V. 12(12). 744. https://doi.org/10.3390/toxins12120744
- Babič J., Tavčar-Kalcher G., Celar F.A. et al. Ergot and ergot alkaloids in cereal grains intended for animal feeding collected in Slovenia: occurrence, pattern and correlations. Toxins. 2020. V. 12 (11). P. 730. https://doi.org/10.3390/toxins12110730
- Bernhard T., Koch M., Snowdon R.J. et al. Undesired fertility restoration in msm1 barley associates with two mTERF genes. Theoret. Appl. Genetics. 2019. V. 132 (5). P. 1335–1350. 10.1007/s00122-019-03281-9' target='_blank'>https://doi: 10.1007/s00122-019-03281-9
- Berraies S., Walkowiak S., Buchwaldt L. et al. Ergot (Claviceps spp.) of cereals in Western Canada. Plant Health Cases. 2023. https://doi.org/10.1079/planthealthcases.2023.0004
- Börner A., Korzun V., Polley A. et al. Genetics and molecular mapping of a male fertility restoration locus (Rfg1) in rye (Secale cereale L.). Theoret. Appl. Genetics. 1998. V. 97 (1). P. 99–102. https://doi.org/10.1007/s001220050871
- Bryła M., Ksieniewicz-Woźniak E., Waśkiewicz A. et al. Stability of ergot alkaloids during the process of baking rye bread. Lebensm.-Wiss. Technol. 2019. V. 110. P. 269. https://doi.org/10.1016/j.lwt.2019.04.065
- Cano R., Lenz A.R., Galan-Vasquez E. et al. Gene regulatory network inference and gene module regulating virulence in Fusarium oxysporum. Front. Microbiol. 2022. V. 13. Art. 861528. https://doi.org/10.3389/fmicb.2022.861528
- Carbonell-Rozas L., Mahdjoubi C.K., Arroyo-Manzanares N. et al. Occurrence of ergot alkaloids in barley and wheat from Algeria. Toxins. 2021. V. 13 (5). P. 316. https://doi.org/10.3390/toxins13050316.
- Cherewyk J.E., Grusie-Ogilvie T.J., Parker S.E. et al. Ammonization of the R- and S-epimers of ergot alkaloids to assess detoxification potential. J. Agricultural Food Chem. 2022. V. 70 (29). P. 8931–8941. https://doi.org/10.1021/acs.jafc.2c01583
- Cherewyk J.E., Parker S.E., Blakley B.R. et al. Assessment of the vasoactive effects of the (S)-epimers of ergot alkaloids in vitro. J. Animal Science. 2020. V. 98 (7). skaa203. https://doi.org/10.1093/jas/skaa203
- Chung S.W.C. A critical review of analytical methods for ergot alkaloids in cereals and feed and in particular suitability of method performance for regulatory monitoring and epimer-specific quantification. Food Additives and Contaminants: Pt A. 2021. V. 38 (6). P. 997–1012. https://doi.org/10.1080/19440049.2021.1898679
- Curtis C.A., Lukaszewski A.J. Localization of genes in rye that restore male fertility to hexaploid wheat with timopheevi cytoplasm. Plant Breeding. 1993. V. 111 (2). P. 106–112. https://doi.org/10.1111/j.1439-0523.1993.tb00615.x.
- Debnath S., Sharma D., Chaudhari S.Y. et al. Wheat ergot fungus-derived and modified drug for inhibition of intracranial aneurysm rupture due to dysfunction of TLR-4 receptor in Alzheimer’s disease. PLOS One. 2023. V. 18 (1). e0279616. https://doi.org/10.1371/journal.pone.0279616
- Delph L.F., Touzet P., Bailey M.F. Merging theory and mechanism in studies of gynodioecy. Trends Ecol. Evol. 2007. V. 22 (1). P. 17–24. https://doi.org/10.1016/j.tree.2006.09.013
- Demarchi J.J.A.A., Giacomini A.A., Mattos W.T. et al. Components of seed production and ergot resistance used as criteria for selection of Brachiaria hybrids. Acta Scientiarum. 2022. V. 44 (1). e56622. https://doi.org/10.4025/actascianimsci.v44i1.56622
- Dohmen G., Hessberg H., Geiger H.H. et al. CMS in rye: Comparative RFLP and transcript analyses of mitochondria from fertile and male-sterile plants. Theoret. Appl. Genetics. 1994. V.89 (7–8). P. 1014–1018. https://doi.org/10.1007/BF00224532
- Doi Y., Wakana D., Takeda H. et al. Production of Ergot Alkaloids by the Japanese Isolate Claviceps purpurea var. agropyri on Rice Medium. Adv. Microbiol. 2022. V. 12 (4). P. 254–269. https://doi.org/10.4236/aim.2022.124019
- Dopstadt J., Neubauer L., Tudzynski P. et al. The epipolythiodiketopiperazine gene cluster in Claviceps purpurea: dysfunctional cytochrome P450 enzyme prevents formation of the previously unknown clapurines. PLOS One. 2016. V. 11 (7). e0158945. https://doi.org/10.1371/journal.pone.0158945
- Dung J.K.S., Kaur N., Walenta D.L. et al. Reducing Claviceps purpurea sclerotia germination with soil-applied fungicides. Crop Protect. V. 106. 2018. P. 146–149. https://doi.org/10.1016/j.cropro.2017.12.023
- Eady C. The impact of alkaloid-producing Epichloe endophyte on forage ryegrass breeding: a New Zealand perspective. Toxins. 2021. V. 13 (2). P. 158. https://doi.org/10.3390/toxins13020158
- European Food Safety Authority (EFSA). Scientific opinion on ergot alkaloids in food and feed. EFSA J. 2012. V. 10. 2798. https://doi.org/10.2903/j.efsa.2012.2798
- Falke K.C., Wilde P., Miedaner T. Rye introgression lines as source of alleles for pollen-fertility restoration in pampa cms. Plant Breeding. 2009. V. 128. P. 528–531. https://doi.org/10.1111/j.1439–0523.2008.01589.x
- Flieger M., Stodůlková E., Wyka S.A. et al. Ergochromes: heretofore neglected side of ergot toxicity. Toxins. 2019. V. 11 (8). P. 439. https://doi.org/10.3390/toxins11080439
- Florea S., Jaromczyk J., Schardl C.L. Non-transgenic CRISPR-mediated knockout of entire ergot alkaloid gene clusters in slow-growing asexual polyploid fungi. Toxins. 2021. V. 13 (2). P. 153. https://doi.org/10.3390/toxins13020153
- Geiger H.H. Restoration of pollen fertility to cytoplasmic male sterile rye. Theoret. Appl. Genetics. 1972. V. 42 (1). P. 32–33.
- Geiger H.H., Miedaner T. Genetic basis and phenotypic stability of male-fertility restoration in rye. Vorträge Pflanzenzücht. 1996. V. 35. P. 27–38.
- Geiger H.H., Morgenstern K. Angewandt-genetische Studien zur cytoplasmatischen Pollensterilität bei Winterroggen. Theoret. Appl. Genetics. 1975. V. 46. P. 269–276.
- Gordon A., Basler R., Bansept-Basler P. et al. The identification of QTL controlling ergot sclerotia size in hexaploid wheat implicates a role for the Rht dwarfing alleles. Theoret. Appl. Genetics. 2015. V. 128. P. 2447–2460. https://doi.org/10.1007/s00122-015-2599-5
- Gordon A., McCartney C., Knox R.E. et al. Genetic and transcriptional dissection of resistance to Claviceps purpurea in the durum wheat cultivar Greenshank. Theoret. Appl. Genetics. 2020. V. 133. P. 1873–1886. https://doi.org/10.1007/s00122-020-03561-9
- Hackauf B., Bauer E., Korzun V. et al. Fine mapping of the restorer gene Rfp3 from an Iranian primitive rye (Secale cereale L.). Theoret. Appl. Genetics. 2017. V. 130 (6). P. 1179–1189. https://doi.org/10.1007/s00122-017-2879-3
- Halliwell B., Cheah I. Ergothioneine, where are we now? FEBS Letters. 2022. V. 596 (10). https://doi.org/1227-1230 10.1002/1873-3468.14350
- Hicks C., Witte T.E., Sproule A. et al. Evolution of the ergot alkaloid biosynthetic gene cluster results in divergent mycotoxin profiles in Claviceps purpurea sclerotia. Toxins. 2021. V. 13 (12). P. 861. https://doi.org/10.3390/toxins13120861
- Johnson J.W., Ellis M.J., Piquette Z.A. et al. Antibacterial activity of metergoline analogues: revisiting the ergot alkaloid scaffold for antibiotic discovery. ACS Medicinal Chemistry Letters. 2022. V. 13 (2). P. 284–291. https://doi.org/10.1021/acsmedchemlett.1c00648
- Johnson L.J., de Bonth A.C.M., Briggs L.R. et al. The exploitation of Epichloae endophytes for agricultural benefit. Fungal Diversity. 2013. V. 60 (1). P. 171–188. https://doi.org/10.1007/s13225-013-0239-4
- Jonkers W., Gundel P.E., Verma S.K. et al. Editorial: Seed microbiome research. Front. Microbiol. 2022. V. 13. Art. 943329. https://doi.org/10.3389/fmicb.2022.943329
- Juroszek P., Racca P., Link S. et al. Overview on the review 622 articles published during the past 30 years relating to the potential climate change effects on plant pathogens and crop disease risks. Plant Pathol. 2020. V. 169 (2). P. 179–193. https://doi.org/10.1111/ppa.13119
- Kebede D., Dramadri I.O., Rubaihayo P. et al. Resistance of sorghum genotypes to ergot (Claviceps species). Agriculture. 2023. V. 13 (5). e1100. https://doi.org/10.3390/agriculture13051100
- Kim Y.J., Zhang D. Molecular control of male fertility for crop hybrid breeding. Trends in Plant Sci. 2018. V. 23 (1). P. 53–65. https://doi.org/10.1016/j.tplants.2017.10.001
- Klotz J.L. Global impact of ergot alkaloids. Toxins. 2022. V. 14 (3). P. 186. https://doi.org/10.3390/toxins14030186
- Kobylyanskiy V.D. Cytoplasmatische männliche Sterilität bei diploidem Roggen. Vestnik Selskokhoz. Nauki. 1969. V. 24. P. 18–22.
- Kobylyanskiy V.D. Production of sterile analogues of winter rye varieties, sterile maintainers and fertile restorers. Tr. Prikladnoi Bot. Genet. Selekt. 1971. 44. P. 76–85.
- Kodisch A., Schmiedchen B., Eifler J. et al. Maternal differences for the reaction to ergot in unfertilized hybrid rye (Secale cereale). Eur J. Plant Pathol. 2022. V. 163. P. 181–191. https://doi.org/10.1007/s10658-022-02467-0
- Kodisch A., Wilde P., Schmiedchen B. et al. Ergot infection in winter rye hybrids shows differential contribution of male and female genotypes and environment. Euphytica. 2020. V. 216 (4). P. 65. https://doi.org/10.1007/s10681-020-02600-2
- Koester L.R., Poole D.H., Serão N.V.L. et al. Beef cattle that respond differently to fescue toxicosis have distinct gastrointestinal tract microbiota. PLOS One. 2020. V. 15. e0229192. https://doi.org/10.1371/journal.pone.0229192
- Kozák L., Szilágyi Z., Tóth L. et al. Functional characterization of the idtF and idtP genes in the Claviceps paspali indole diterpene biosynthetic gene cluster. Folia Microbiologica. 2020. 65 (3). P. 605–613. https://doi.org/10.1007/s12223-020-00777-6
- Kozák L., Szilágyi Z., Vágó B. et al. Inactivation of the indolediterpene biosynthetic gene cluster of Claviceps paspali by Agrobacterium-mediated gene replacement. Appl. Microbiol. Biotechnol. 2018. V. 102 (7). P. 3255–3266. https://doi.org/10.1007/s00253-018-8807-x
- Laihonen M., Saikkonen K., Helander M. et al. Epichloë endophyte-promoted seed pathogen increases host grass resistance against insect herbivory. Front. Microbiol. 2022. V. 12. e786619. https://doi.org/10.3389/fmicb.2021.786619
- Łapiński M., Stojałowski S. The C-source of sterility-inducing cytoplasm in rye: Origin, identity and occurrence. Vorträge Pflanzenzücht. 1996. V. 35. P. 51–60.
- Lattanzio V.M.T., Verdini E., Sdogati S. et al. Undertaking a new regulatory challenge: monitoring of ergot alkaloids in Italian food commodities. Toxins. 2021. V. 13 (12). P. 871. https://doi.org/10.3390/toxins13120871
- Lea K.M., Smith S.R. Using on-farm monitoring of ergovaline and tall fescue composition for horse pasture management. Toxins. 2021. V. 13 (10). P. 683. https://doi.org/10.3390/toxins13100683
- Li S., Ge F.R., Xu M. et al. Arabidopsis COBRA-LIKE10, a GPI-anchored protein, mediates directional growth of pollen tubes. The Plant Journal. 2013. V. 74 (3). P. 486–497. https://doi.org/10.1111/tpj.12139
- Lionetti V., Cervone F., Bellincampi D. Methyl esterification of pectin plays a role during plant – pathogen interactions and affects plant resistance to diseases. J. Plant Physiol. 2012. V. 169 (16). P. 1623–1630. https://doi.org/10.1016/j.jplph.2012.05.006
- Liu M., Findlay W., Dettman J. et al. Mining indole alkaloid synthesis gene clusters from genomes of 53 Claviceps strains revealed redundant gene copies and an approximate evolutionary hourglass model. Toxins. 2021. V. 13 (11). P. 799. https://doi.org/10.3390/toxins13110799
- Liu M., Kolařík M., Tanaka E. The 168-year taxonomy of Claviceps in the light of variations: From three morphological species to four sections based on multigene phylogenies. Can. J. Plant Pathol. 2022. V. 44 (1407). P. 783–792. https://doi.org/10.1080/07060661.2022.2085327
- Lünne F., Köhler J., Stroh C. et al. Insights into ergochromes of the plant pathogen Claviceps purpurea. J. Natural Products. 2021. V. 84 (10). P. 2630–2643. https://doi.org/10.1021/acs.jnatprod.1c00264
- Lünne F., Niehaus E.-M., Lipinski S. et al. Identification of the polyketide synthase PKS7 responsible for the production of lecanoric acid and ethyl lecanorate in Claviceps purpurea. Fungal Genetics Biol. 2020. V. 145. P. 103481. https://doi.org/10.1016/j.fgb.2020.103481
- Ma Z.Q., Sorrells M.E. Genetic analysis of fertility restoration in wheat using restriction fragment length polymorphism. Crop Sci. 1995. 35. P. 1137–1143. https://doi.org/10.2135/cropsci1995.0011183X003500040037x
- Mahmood K., Orabi J., Kristensen P.S. et al. De novo transcriptome assembly, functional annotation, and expression profiling of rye (Secale cereale L.) hybrids inoculated with ergot (Claviceps purpurea). Scientific Reports. 2020. V. 10 (1). e13475. https://doi.org/10.1038/s41598-020-70406-2
- Malinovsky F.G., Fangel J.U., Willats W.G. The role of the cell wall in plant immunity. Front. Plant Sci. 2014. V. 6 (5). P. 178. https://doi.org/10.3389/fpls.2014.00178
- Malinowski D.P., Belesky D.P. Epichloë (formerly Neotyphodium) fungal endophytes increase adaptation of cool-season perennial grasses to environmental stresses. Acta Agrobotanica. 2019. V. 72 (2). Art. 1767. https://doi.org/10.5586/aa.1767
- McLaren N.W. Efficacy of fungicides in the control of ergot (Claviceps africana) in sorghum (Sorghum bicolor) hybrid seed production. South African J. Plant Soil. 2003. V. 20 (3). P. 154–156. https://doi.org/10.1080/02571862.2003.10634926
- Melonek J., Duarte J., Martin J. et al. The genetic basis of cytoplasmic male sterility and fertility restoration in wheat. Nature Communication. 2021. V. 12. Art. 1036. https://doi.org/10.1038/s41467-021-21225-0
- Melz G., Adolf K. Genetic analysis of rye (Secale cereale L.) genetics of male sterility of the G-type. Theoret. Appl. Genetics. 1991. V. 82 (6). P. 761–764. https://doi.org/10.1007/BF00227322
- Melz G., Melz G., Hartman F. Genetics of a male-sterile rye of ‘G-type’ with results of the first F1-hybrids. Plant Breeding and Seed Sci. 2003. V. 47. P. 47–55.
- Menzies J.G., Turkington T.K. An overview of the ergot (Claviceps purpurea) issue in Western Canada: Challenges and solutions. Can J. Plant Pathol. 2015. 37. P. 40–51. https://doi.org/101080/07060661.2014.986527
- Merkel S., Dib B., Maul R. et al. Degradation and epimerization of ergot alkaloids after baking and in vitro digestion. Anal. Bioanal. Chem. 2012. V. 404. P. 2489–2497. https://doi.org/10.1007/s00216-012-6386-8
- Mette M.F., Gils M., Longin C.F.H. et al. Hybrid breeding in wheat. In: Advances in wheat genetics: from genome to field / Y. Ogihara, S. Takumi, H. Handa (eds). Springer, Tokyo, 2015, pp. 225–232.
- Miedaner T., Geiger H.H. Biology, genetics, and management of ergot (Claviceps spp.) in rye, sorghum, and pearl millet. Toxins. 2015. V. 7 (3). P. 659–678. https://doi.org/10.3390/toxins7030659
- Miedaner T., Glass C., Dreyer F. et al. Mapping of genes for male-fertility restoration in ‘Pampa’ CMS winter rye (Secale cereale L.). Theoret. Appl. Genetics. 2000. V. 101 (8). P. 1226–1233. https://doi.org/10.1007/s001220051601
- Miedaner T., Herter C.P., Goßlau H. et al. Correlated effects of exotic pollen-fertility restorer genes on agronomic and quality traits of hybrid rye. Plant Breeding. 2017. V. 136 (2). P. 224–229. https://doi.org/10.1111/pbr.12456
- Miedaner T., Kodisch A., Raditschnig A. et al. Ergot alkaloid contents in hybrid rye are reduced by breeding. Agriculture. 2021. V. 11 (6). P. 526. https://doi.org/10.3390/agriculture11060526
- Miedaner T., Korzun V., Wilde P. Effective pollen-fertility restoration is the basis of hybrid rye production and ergot mitigation. Plants. 2022. V. 11 (9). Art. 1115. https://doi.org/10.3390/plants11091115
- Mote R.S., Filipov N.M. Use of integrative interactomics for improvement of farm animal health and welfare: an example with fescue toxicosis. Toxins. 2020. V. 12 (10). P. 633. https://doi.org/10.3390/toxins12100633
- Niedziela A., Brukwiński W., Bednarek P.T. Genetic mapping of pollen fertility restoration QTLs in rye (Secale cereale L.) with CMS Pampa. J. Applied Genetics. 2021. V. 62(2). P. 185–198. https://doi.org/10.1007/s13353-020-00599-9
- Oeser B., Heidrich P.M., Müller U. et al. Polygalacturonase is a pathogenicity factor in the Claviceps purpurea/rye interaction. Fungal Genetics Biol. 2002. V. 36 (3). P. 176–186. https://doi.org/10.1016/S1087-1845(02)00020-8
- Ordza T., Węgrzyn E., Dominiak-Świgoń M. et al. Mycobiota of rye seeds infected with ergot fungi. Current Research in Environmental and Applied Mycology (J. Fungal Biology). 2022. V. 12 (1). P. 95–101. https://doi.org/10.5943/cream/12/1/8
- Pageau D., Wauthy J., Collin J. Evaluation of barley cultivars for resistance to ergot fungus, Claviceps purpurea (Fr.) Tul. Canadian J. Plant Sci. 1994. V. 74 (3). P. 663–665. https://doi.org/10.4141/cjps94-118
- Pažoutová S., Frederickson D.E. Genetic diversity of Claviceps africana on sorghum and Hyparrhenia. Plant Pathol. 2005. V. 54. P. 749–763. https://doi.org/10.1111/j.1365-3059.2005.01255.x
- Pérez L.I., Gundel P.E., Ghersa C.M. et al. Family issues: fungal endophyte protects host grass from the closely related pathogen Claviceps purpurea. Fungal Ecol. 2013. V. 6 (5). P. 379–386. https://doi.org/10.1016/j.funeco.2013.06.006
- Pérez L.I., Gundel P.E., Marrero H.J. et al. Symbiosis with systemic fungal endophytes promotes host escape from vector-borne disease. Oecologia. 2017. V. 184 (1). P. 237–245. https://doi.org/10.1007/s00442-017-3850-3
- Platford R.G., Bernier C.C. Resistance to Claviceps purpurea in spring and durum wheat. Nature. 1970. N226(5247). P. 770. https://doi.org/10.1038/226770a0
- Pleadin J., Kudumija N., Škrivanko M. et al. Ergot sclerotia and ergot alkaloids occurrence in wheat and rye grains produced in Croatia. Veterinarska Stanica. 2022. V. 53 (5). P. 503–511. https://doi.org/10.46419/vs.53.5.14
- Poole D.H., Mayberry K.J., Newsome M. et al. Evaluation of resistance to fescue toxicosis in purebred angus cattle utilizing animal performance and cytokine response. Toxins. 2020. V. 12 (12). P. 796. https://doi.org/10.3390/toxins12120796
- Qiao Y.-M., Wen Y.-H., Gong T. et al. Improving ergometrine production by easO and easP Knockout in Claviceps paspali. Fermentation. 2022. V. 8 (6). P. 263. https://doi.org/10.3390/fermentation8060263
- Rabanus-Wallace M.T., Hackauf B., Mascher M. et al. Chromosome-scale genome assembly provides insights into rye biology, evolution, and agronomic potential. Nature Genetics. 2021. V. 53 (4). P. 564–573. https://doi.org/10.1038/s41588-021-00807-0
- Rahimabadi P.D., Yourdkhani S., Rajabi M. et al. Ergotism in feedlot cattle: clinical, hematological, and pathological findings. Comparative Clinical Pathol. 2022. V. 31 (2). P. 281–291. https://doi.org/10.1007/s00580-022-03331-7
- Rios E., Blount A., Harmon P. et al. Ergot resistant tetraploid bahiagrass and fungicide effects on seed yield and quality. Plant Health Progress. 2015. V. 16 (2). P. 56–62. https://doi.org/10.1094/PHP-RS-14-0051
- Robles P., Quesada V. Research progress in the molecular functions of plant mTERF proteins. Cells. 2021. V. 10 (2). P. 205. https://doi.org/10.3390/cells10020205
- Ryley M., Bhuiyan S., Herde D. et al. Efficacy, timing and method of application of fungicides for management of sorghum ergot caused by Claviceps africana. Australasian Plant Pathol. 2003. V. 32 (3). P. 329–338. http://dx.doi.org/10.1071/ap03034
- Saikkonen K., Young C.A., Helander M. et al. Endophytic Epichloë species and their grass hosts: from evolution to applications. Plant Molecular Biol. 2016. V. 90 (6). P. 665–675. https://doi.org/10.1007/s11103-015-0399-6
- Schnable P.S., Wise R.P. The molecular basis of cytoplasmic male sterility and fertility restoration. Trends in Plant Sci. 1998. V. 3 (5). P. 175–180. https://doi.org/10.1016/S1360-1385(98)01235-7
- Schultz T.R., Johnston W.J., Golob C.T. Control of ergot in Kentucky bluegrass seed production using fungicides. Plant Disease. 1993. V. 77 (7). P. 685–687.
- Schummer C., Zandonella I., van Nieuwenhuyse A. et al. Epimerization of ergot alkaloids in feed. Heliyon. 2020. V. 6. e04336. https://doi.org/10.1016/j.heliyon.2020.e04336
- Shahid M.G., Nadeem M., Gulzar A. et al. Novel ergot alkaloids production from Penicillium citrinum employing response surface methodology technique. Toxins. 2020. V. 12 (7). P. 427. https://doi.org/10.3390/toxins12070427
- Shahinnia F., Geyer M., Block A. et al. Identification of Rf9, a gene contributing to the genetic complexity of fertility restoration in hybrid wheat. Front. Plant Sci. 2020. V. 11. P. 1720. https://doi.org/10.3389/fpls.2020.577475
- Sheshegova T.K., Shchekleina L.M., Antipova T.V. et al. Search for rye and wheat genotypes which are resistant to Claviceps purpurea (Fr.) Tul. and hamper accumulation of ergoalkaloids in sclerotia. Agricultural Biology. 2021. V. 56 (3). P. 549–558. (In Russ.). https://doi.org/10.15389/agrobiology.2021.3.549rus
- Sheshegova T.K., Shchekleina L.M., Zhelifonova V.P. et al. A resistance of rye varieties to ergot and ergot alkaloid content in Claviceps purpurea sclerotia on the Kirov region environments. Mikologiya i fitopatologiya. 2019. V. 53 (3). P. 177–182. (In Russ.). https://doi.org/10.1134/S0026364819030127
- Smakosz A., Kurzyna W., Rudko M. et al. The usage of ergot (Claviceps purpurea (Fr.) Tul.) in obstetrics and gynecology: a historical perspective. Toxins. 2021. V. 13 (7). P. 492. https://doi.org/10.3390/toxins13070492.
- Stanford K., Swift M., Wang Y. et al. Effects of feeding a mycotoxin binder on nutrient digestibility, alkaloid recovery in feces, and performance of lambs fed diets contaminated with cereal ergot. Toxins. 2018. V. 10. P. 312. https://doi.org/10.3390/toxins10080312
- Stojałowski S.A., Milczarski P., Hanek M. et al. DArT markers tightly linked with the Rfc1 gene controlling restoration of male fertility in the CMS-C system in cultivated rye (Secale cereale L.). J. Applied Genetics. 2011. V. 52 (3). P. 313–318. https://doi.org/10.1007/s13353-011-0049-x
- Tente E. Investigations into the molecular interactions between Claviceps purpurea, the causal agent of ergot, and cereal hosts. Doctoral thesis. University of Cambridge. 2020. https://doi.org/10.17863/CAM.64578
- Tente E., Carrera E., Gordon A. et al. The role of the wheat reduced height (Rht)-DELLA mutants and associated hormones in infection by Claviceps purpurea, the causal agent of ergot. Phytopathology. 2022. 112(4). P. 842–851. https://doi.org/10.1094/PHYTO-05-21-0189-r
- Tente E., Ereful N., Rodriguez A.C. et al. Reprogramming of the wheat transcriptome in response to infection with Claviceps purpurea, the causal agent of ergot. BMC Plant Biology. 2021. V. 21. P. 316. https://doi.org/10.1186/s12870-021-03086-3
- Thakur R.P., Rai K.N. Pearl millet ergot research: advances and implications. In: Sorghum and millets diseases / J.F. Leslie (eds). Iowa State Press, Iowa, 2003, pp. 57–64. https://doi.org/10.1002/9780470384923.ch9
- Tittlemier S., Drul D., Roscoe M. et al. Fate of ergot alkaloids during laboratory scale durum processing and pasta production. Toxins. 2019. V. 11. P. 195. https://doi.org/10.3390/toxins11040195
- Tsukiboshi T., Shimanuki T., Uematsu T. Claviceps sorghicola sp. nov., a destructive ergot pathogen of sorghum in Japan. Mycol. Res. V. 103 (11). 1999. P. 1403–1408. https://doi.org/10.1017/S0953756299008539
- Uhlig S., Botha C.J., Vrеlstad T. et al. Indole-diterpenes and ergot alkaloids in Cynodon dactylon (Bermuda grass) infected with Claviceps cynodontis from an outbreak of tremors in cattle. J. Agricultural Food Chemistry. 2009. V. 57 (23). P. 11112–11119. https://doi.org/10.1021/jf902208w
- van der Hoek S.A., Rusnák M., Jacobsen I.H. et al. Engineering ergothioneine production in Yarrowia lipolytica. FEBS Letters. 2022. V. 596 (10). P. 1356–1364. https://doi.org/10.1002/1873-3468.14239
- van der Hoek S.A., Rusnák M., Wang G. et al. Engineering precursor supply for the high-level production of ergothioneine in Saccharomyces cerevisiae. Metabolic Engineering. 2022. V. 70. P. 129–142. https://doi.org/10.1016/j.ymben.2022.01.012
- Vendelbo N.M., Mahmood K., Sarup P. et al. Discovery of a novel leaf rust (Puccinia recondita) resistance gene in rye (Secale cereale L.) using association genomics. Cells. 2022. V. 11 (1). P. 64. https://doi.org/10.3390/cells11010064
- Vendelbo N.M., Mahmood K., Sarup P. et al. Genomic scan of male fertility restoration genes in a ‘Gülzow’ type hybrid breeding system of rye (Secale cereale L.). Int. J. Molec. Sci. 2021. V. 22 (17). Art. 9277. https://doi.org/10.3390/ijms22179277
- Volnin A.A., Savin P.S. Ergot Claviceps purpurea (Fries) Tulasne alkaloid diversity and virulence: evolution, genetic diversification and metabolic engineering (review). Agricultural Biology. 2022. V. 57 (5). P. 852–881. (In Russ.). https://doi.org/10.15389/agrobiology.2022.5.852rus
- Volpi C., Raiola A., Janni M. et al. Claviceps purpurea expressing polygalacturonases escaping PGIP inhibition fully infects PvPGIP2 wheat transgenic plants but its infection is delayed in wheat transgenic plants with increased level of pectin methyl esterification. Plant Physiol. Biochem. 2013. V. 73. P. 294–301. https://doi.org/10.1016/j.plaphy.2013.10.011
- Walkowiak S., Taylor D., Fu B.X. et al. Ergot in Canadian cereals – relevance, occurrence, and current status. Can. J. Plant Pathol. 2022. V. 44 (6): P. 793–805. https://doi.org/10.1080/07060661.2022.2077451
- Wang Z., Wan L., Zhang X. et al. Interaction between Brassica napus polygalacturonase inhibition proteins and Sclerotinia sclerotiorum polygalacturonase: implications for rapeseed resistance to fungal infection. Planta. 2021. V. 253 (2). P. 34. https://doi.org/10.1007/s00425-020-03556-2
- Wilbanks S.A., Justice S.M., West T. et al. Effects of tall fescue endophyte type and dopamine receptor D2 genotype on cow-calf performance during late gestation and early lactation. Toxins. 2021. V. 13 (3). P. 195. https://doi.org/10.3390/toxins13030195
- Wilde P., Miedaner T. Hybrid rye breeding. In: The rye genome. Compendium of plant genomes/ M.T. Rabanus-Wallace, N. Stein (eds.). Springer, 2021, pp. 13–41.
- Wricke G., Wilde P., Wehling P. et al. An isozyme marker for pollen fertility restoration in the Pampa cms system of rye (Secale cereale L.). Plant Breeding. 1993. V. 111. P. 290–294. https://doi.org/10.1111/j.1439-0523.1993.tb00644.x
- Wyka S., Broders K. Brome grasses represent the primary source of Claviceps purpurea inoculum associated with barley fields in the San Luis Valley of Colorado. Can. J. Plant Pathol. 2023. V. 45 (1). P. 55–29. https://doi 10.1080/07060661.2022.2091041
- Wyka S., Mondo S., Liu M. et al. A large accessory genome and high recombination rates may influence global distribution and broad host range of the fungal plant pathogen Claviceps purpurea. PLOS One. 2022. V. 17 (2). e0263496. https://doi.org/10.1371/journal.pone.0263496
- Wyka S.A., Mondo S.J., Liu M. et al. Whole-genome comparisons of ergot fungi reveals the divergence and evolution of species within the genus Claviceps are the result of varying mechanisms driving genome evolution and host range expansion. Genome Biol. Evol. 2021. V. 13 (2). evaa267. https://doi.org/10.1093/gbe/evaa267
- Xiong L., Xie Z., Ke J. et al. Engineering Mycolicibacterium neoaurum for the production of antioxidant ergothioneine. Food Bioengineering. 2022. V. 1 (1). P. 26–36. https://doi.org/10.1002/fbe2.12004
- Young J.C., Chen Z.J., Marquardt R.R. Reduction in alkaloid content of ergot sclerotia by chemical and physical treatment. J. Agric. Food Chem. 1983. V. 31. P. 413–415. https://doi.org/10.1021/jf00116a057
- Zhang H., Li X., White J.F. et al. Epichloë endophyte improves ergot disease resistance of host (Achnatherum inebrians) by regulating leaf senescence and photosynthetic capacity. J. Plant Growth Regulation. 2022. V. 41. P. 808–817. https://doi.org/10.1007/s00344-021-10340-3
- Волнин А.А., Савин П.С. (Volnin, Savin) Разнообразие и вирулентность алкалоидов cпорыньи Claviceps purpurea (Fries) Tulasne: эволюция, генетическая диверсификация и метаболическая инженерия (обзор) // Сельскохозяйственная биология. 2022. Т. 57. № 5. С. 852–881.
- Кобылянский В.Д. (Kobylyanskiy) Получение стерильных аналогов сортов озимой ржи, сохраняющих стерильность и восстановливающих фертильность // Тр. прикладной бот. генет. селекции. 1971. Т. 44. С. 76–85.
- Кобылянский В.Д. (Kobylyanskiy) Цитоплазматическая мужская стерильность у диплоидной ржи // Вестник cельскохоз. наук. 1969. Т. 24. С. 18–22.
- Шешегова Т.К., Щеклеина Л.М., Антипова Т.В. и др. (Sheshegova et al.) Поиск генотипов ржи и пшеницы, устойчивых к Claviceps purpurea (Fr.) Tul. и препятствующих накоплению эргоалкалоидов в склероциях // Сельскохозяйственная биология. 2021. Т. 56. № 3. С. 549–558.
- Шешегова Т.К., Щеклеина Л.М., Желифонова В.П. и др.(Sheshegove et al.) Устойчивость сортов ржи к спорынье и содержание алкалоидов спорыньи в склероциях Claviceps purpurea в условиях Кировской области // Микология и фитопатология. 2019. Т. 53. № 3. С. 177–182.
Дополнительные файлы
