Effect of silver nanoclusters on the copper resistance of Achromobacter insolitus LCu2

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Abstract. In this work, the resistance of Achromobacter insolitus LCu2 cells to copper (II) was reduced by adding 1 μM silver nanoclusters to the culture medium: the maximum tolerable concentration decreased by 4 times, the minimum inhibitory concentration – by 25 times. It is assumed that nanoclusters disrupt the functioning of the copper (II) efflux system through binding to the CusC protein, which leads to a partial loss of the ability of bacteria to export excess copper (II) cations from cells.

Толық мәтін

Рұқсат жабық

Авторлар туралы

G. Burygin

Saratov Scientific Centre of the Russian Academy of Sciences; Saratov State University; Saratov State University of Genetics, Biotechnology, and Engineering named after N.I. Vavilov

Хат алмасуға жауапты Автор.
Email: burygingl@gmail.com

Institute of Biochemistry and Physiology of Plants and Microorganisms

Ресей, Saratov, 410049; Saratov, 410012; Saratov, 410012

A. Astankova

Saratov Scientific Centre of the Russian Academy of Sciences; Saratov State University

Email: burygingl@gmail.com

Institute of Biochemistry and Physiology of Plants and Microorganisms

Ресей, Saratov, 410049; Saratov, 410012

D. Chumakov

Saratov Scientific Centre of the Russian Academy of Sciences

Email: burygingl@gmail.com

Institute of Biochemistry and Physiology of Plants and Microorganisms

Ресей, Saratov, 410049

Y. Kryuchkova

Saratov Scientific Centre of the Russian Academy of Sciences; Saratov State University of Genetics, Biotechnology, and Engineering named after N.I. Vavilov

Email: burygingl@gmail.com

Institute of Biochemistry and Physiology of Plants and Microorganisms

Ресей, Saratov, 410049; Saratov, 410012

Әдебиет тізімі

  1. Abramson J., Adler J., Dunger J., Evans R., Green T., Pritzel A., Ronneberger O., Willmore L., Ballard A. J., Bambrick J., Bodenstein S. W., Evans D. A., Chia-Chun Hung, O’Neill M., Reiman D., Tunyasuvunakool K., Wu Z., Žemgulytė A., Arvaniti E., Beattie C., Bertolli O., Bridgland A., Cherepanov A., Congreve M., Cowen-Rivers A.I., Cowie A., Figurnov M., Fuchs F. B., Gladman H., Jain R., Khan Y. A., Low C. M.R., Perlin K., Potapenko A., Savy P., Singh S., Stecula A., Thillaisundaram A., Tong C., Yakneen S., Zhong E. D., Zielinski M., Žídek A., Bapst V., Kohli P., Jaderberg M., Hassabis D., Jumper J. M. Accurate structure prediction of biomolecular interactions with AlphaFold 3 // Nature. 2024. V. 630. P. 493–500.
  2. Cervantes C., Gutierrez-Corona F. Copper resistance mechanisms in bacteria and fungi // FEMS Microbiol. Rev. 1994. V. 14. P. 121–137.
  3. Draviana H. T., Fitriannisa I., Khafid M., Krisnawati D. I., Widodo, Lai C. H., Fan Y. J., Kuo T. R. Size and charge effects of metal nanoclusters on antibacterial mechanisms // J. Nanobiotechnol. 2023. V. 21. Art. 428. https://doi.org/10.1186/s12951-023-02208-3
  4. Franke S., Grass G., Rensing C., Nies D. H. Molecular analysis of the copper-transporting efflux system CusCFBA of Escherichia coli // J. Bacteriol. 2003. V. 185. P. 3804–3812.
  5. Hernández-Montes G., Argüello J. M., Valderrama B. Evolution and diversity of periplasmic proteins involved in copper homeostasis in gamma proteobacteria // BMC Microbiol. 2012. V. 12. Art. 249. https://doi.org/10.1186/1471-2180-12-249
  6. Kryuchkova Y. V., Neshko A. A., Gogoleva N. E., Balkin A. S., Safronova V. I., Kargapolova K. Y., Shagimardanova E. I., Gogolev Y. V., Burygin G. L. Genomics and taxonomy of the glyphosate-degrading, copper-tolerant rhizospheric bacterium Achromobacter insolitus LCu2 // Antonie van Leeuwenhoek. 2024. V. 117. Art. 105. https://doi.org/10.1007/s10482-024-01989-3
  7. Magnani D., Solioz M. How bacteria handle copper // Molecular microbiology of heavy metals. Microbiology monographs. V. 6. / Eds. Nies D. H., Silver S. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. P. 259–285. https://doi.org/10.1007/7171_2006_081
  8. Tkachenko O. V., Evseeva N. V., Boikova N. V., Matora L. Y., Burygin G. L., Lobachev Y. V., Shchyogolev S. Y. Improved potato microclonal reproduction with the plant growth-promoting rhizobacteria Azospirillum // Agron. Sustain. Dev. 2015. V. 35. P 1167–1174.
  9. Tumskiy R., Khlebtsov B., Tumskaia A., Evstigneeva S., Antoshkina E., Zakharevich A., Khlebtsov N. G. Enhanced antibacterial activity of novel fluorescent glutathione-capped Ag nanoclusters // Int. J. Mol. Sci. 2023. V. 24. Art. 8306. https://doi.org/10.3390/ijms24098306

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Additional materials
Жүктеу (65KB)
3. Fig. a – Effect of different concentrations of copper (II) cations in the medium (1) and combined action of 1 μM GSH-AgNCs with copper (II) cations (2) on the viability of the A. insolitus LCu2 strain culture; b – 3D model of the efflux pump – protein complex formed by the CusA trimer, CusB hexamer and CusC trimer of the A. insolitus LCu2 strain; c – horizontal projection of the 3D model of the CusBC protein complex forming a transport pore in the outer cell membrane (copper (II) cations are shown as balls).

Жүктеу (230KB)

© Russian Academy of Sciences, 2025