Влияние технологии прямого посева на эмиссию СО2 из черноземовидных почв Приамурья

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Почвенную эмиссию СО2 измеряли полевым камерным методом в опыте по применению технологии no-till (без обработки почвы) на черноземовидных почвах приамурского региона России. Температура почвы является хорошим предиктором эмиссии (R2 = 0.8, p < 0.001), что позволило использовать непрерывные ряды температур почвы с логгеров для расчета сезонных потоков с частотой 6 раз в сутки. Суммарный годовой поток на экспериментальном участке (no-till) был на 0.69 т С/га или на 23.6% ниже, чем на контрольном (традиционная обработка почвы). Вклад летнего периода в годовой поток составил 59%. Двухфакторная T&P-модель (температура и осадки) показала завышение годового потока на 40%. Применение для моделирования температуры воздуха с ближайшей метеостанции дало занижение суммарного потока на 13–20%. Запасы углерода в слое почвы 0–30 см по вариантам опыта значимо не различались. Обработка почвы уменьшает плотность верхних горизонтов на 8–12%, однако плотность остается в пределах оптимума для сои. На участке no-till стабильно выше и объемная влажность почвы (в среднем на 38% в слое 0–5 см), что является стратегически важным преимуществом ввиду частых периодов с недостатком влаги.

Полный текст

Доступ закрыт

Об авторах

А. В. Иванов

Институт геологии и природопользования ДВО РАН

Автор, ответственный за переписку.
Email: aleksandrgg86@mail.ru
ORCID iD: 0000-0003-4560-9824
Россия, Благовещенск

В. В. Гетманский

Дальневосточный государственный аграрный университет

Email: aleksandrgg86@mail.ru
Россия, Благовещенск

П. В. Тихончук

Дальневосточный государственный аграрный университет

Email: aleksandrgg86@mail.ru
Россия, Благовещенск

О. А. Селихова

Дальневосточный государственный аграрный университет

Email: aleksandrgg86@mail.ru
Россия, Благовещенск

А. В. Данилов

Институт геологии и природопользования ДВО РАН

Email: aleksandrgg86@mail.ru
Россия, Благовещенск

О. А. Пилецкая

Институт геологии и природопользования ДВО РАН

Email: aleksandrgg86@mail.ru
Россия, Благовещенск

Список литературы

  1. Алферов А.М., Блинов В.Г., Гитарский М.Л., Грабар В.А. и др. Мониторинг потоков парниковых газов в природных экосистемах. Саратов: Амирит, 2017. 279 с.
  2. Гетманский В.В., Тихончук П.В., Захарова Е.Б. Влияние прямого посева на фотосинтетическую деятельность сои сорта Дебют // Агропромышленный комплекс: проблемы и перспективы развития. Мат. межд. конф. Благовещенск, 2024. С. 37–45.
  3. Голов Г.В. Почвы и экология агрофитоценозов Зейско-Буреинской равнины. Владивосток: Дальнаука, 2001. 160 с.
  4. Григорьева В.З., Шкрабтак Н.В., Праскова Ю.А., Пеков Д.Б. Государственная поддержка развития отрасли растениеводства в Амурской области // Фундаментальные исследования. 2021. № 4. C. 35–41.
  5. Дридигер В.К., Иванов А.Л., Кулинцев В.В., Белобров В.П. Чернозем обыкновенный. Прямой посев, Ставропольский край. Опыт, две ротации. Ставрополь: Сервисшкола, 2024. 356 с.
  6. Казеев К.Ш., Мокриков Г.В., Акименко Ю.В., Мясникова М.А., Колесников С.И. Экологическая оценка применения технологии No-Till в Ростовской области. Ростов-на-Дону: Таганрог: Изд-во ЮФУ, 2018. 332 с.
  7. Овсинский И.Е. Новая система земледелия. М., 1911. 288 с.
  8. Пустовойтов Н.Д. Сезонно-мерзлотные почвы и их мелиорация. М.: Наука, 1971. 231 с.
  9. Рахимова Ю.М., Дозоров А.В., Подсевалов М.И., Наумов А.Ю. Влияние различных приёмов основной обработки и применения гербицидов в посевах сои на агрофизические показатели плодородия почвы // Вестник Ульяновской гос. с./х. академии. 2013. № 4. С. 6–13.
  10. Турин Е.Н. Преимущества и недостатки системы земледелия прямого посева в мире (обзор) // Таврический вестник аграрной науки. 2020 № 2. С. 150–168.
  11. Федюнин С.А., Васильев И.В., Сапрыкин Н.П. Перспективные технологии возделывания сои в условиях Оренбуржья // Известия Оренбургского гос. аграрного ун-та. 2017. № 2. С. 27–29.
  12. Ямковой В.А. Соя – фирменная культура Амурской области // Вопросы географии Верхнего Приамурья. 2019. № 6. С. 101–119.
  13. Abdalla K., Chivenge P., Ciais P., Chaplot V. No-tillage lessens soil CO2 emissions the most under arid and sandy soil conditions: results from a meta-analysis // Biogeosciences. 2016. V. 13. P. 3619–3633. https://doi.org/10.5194/bg-13-3619-2016
  14. Bokova A.I., Panina K.S., Dridiger V.K., Gadzhiumarov R.G., Kuznetsova N.A., Potapov M.B. Soil-dwelling springtails as indicators of the efficiency of No-till technologies with different amounts of mineral fertilizers in the crop rotation on chernozem soils // Soil Till. Res. 2023. V. 232. P. 105760. https://doi.org/10.1016/j.still.2023.105760
  15. Breil N.L., Lamaze T., Bustillo V., Marcato-Romain C., Coudert B., Queguiner S., Jarosz-Pelle N. Combined impact of no-tillage and cover crops on soil carbon stocks and fluxes in maize crops // Soil Till. Res. 2023. V. 233. P. 105782. https://doi.org/10.1016/j.still.2023.105782
  16. Buragiene S., Sarauskis E., Romaneckas K., Adamaviciene A., Kriauciuniene Z., Avizienyte D., Marozas V., Naujokiene V. Relationship between CO2 emissions and soil properties of differently tilled soils // Sci. Total Environm. 2019. V. 662. P. 786–795. https://doi.org/10.1016/j.scitotenv.2019.01.236
  17. Chataut G., Bhatta B., Joshi D., Subedi K., Kafle K. Greenhouse gases emission from agricultural soil: a review // J. Agric. Food Res. 2023. V. 11. P. 100533. https://doi.org/10.1016/j.jafr.2023.100533
  18. Chen Z., Leffler A.J. Soil basal respiration and nitrogen mineralization from C3 and C4 grass dominated plant communities respond differently to temperature and soil water variation // J. Arid Env. 2024. V. 224. P. 105235. https://doi.org/10.1016/j.jaridenv.2024.105235
  19. Gelybo G., Barcza Z., Dencso M., Potyo I., Kasa I., Horel A., Pokovai K. et al. Effect of tillage and crop type on soil respiration in a long-term field experiment on chernozem soil under temperate climate // Soil Till. Res. 2022. V. 216. P. 105239. https://doi.org/10.1016/j.still.2021.105239
  20. Graham M.W., Thomas R.Q., Lombardozzi D.L., O’Rourke M.E. Modest capacity of no-till farming to offset emissions over 21st century // Environ. Res. Lett. 2021. V. 16. P. 054055. https://doi.org/10.1088/1748-9326/abe6c6
  21. Ivanov A.V., Zamolodchikov D.G., Salo M.A., Kondratova A.V., Piletskaya O.A., Bryanin S.V. Soil respiration in forest ecosystems in the south of the far east // Eurasian Soil Sc. 2023. V. 56. № 9. P. 1201–1209. https://doi.org/10.1134/S1064229323601142
  22. Kassam A., Friedrich T., Derpsch R. Successful experiences and lessons from conservation agriculture worldwide // Agronomy. 2022. V. 12. № 769. P. 1–19. https://doi.org/10.3390/agronomy12040769
  23. Kurganova I.N., Lopes de Gerenyu V.O., Myakshina T.N., Sapronov D.V., Zhmurin V.A., Kudeyarov V.N., Romashkin I.V. Experimental and model estimates of respiration of the forest sod-podzolic soil in the Prioksko-Terrasny nature reserve // Contemporary Problems of Ecology. 2020. V. 13. P. 813–824. https://doi.org/10.1134/S1995425520070057
  24. Kudeyarov V.N. Soil respiration and carbon sequestration: a review // Eurasian Soil Sc. 2023. V. 56. P. 1191–1200. https://doi.org/10.1134/S1064229323990012
  25. Mondal S., Chakraborty D., Paul R.K., Mondal A., Ladha J.K. No-till is more of sustaining the soil than a climate change mitigation option // Agriculture, Ecosyst. Env. 2023. V. 352. P. 108498. https://doi.org/10.1016/j.agee.2023.108498
  26. Potapov P., Turubanova S., Hansen M.C. et al. Global maps of cropland extent and change show accelerated cropland expansion in the twenty-first century // Nat Food. 2022. V. 3. P. 19–28. https://doi.org/10.1038/s43016-021-00429-z

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Изменчивость температур почвы и воздуха на объектах измерений (a) и сезонная динамика эмиссии СО2 с поверхности почвы (b). (a) Ta – температура воздуха, Ts-n – температура почвы на участке no-till, Ts-t – температура почвы на участке с традиционной технологией, (b) 1 – технология no-till, 2 – традиционная технология.

3. Рис. 2. Изменение плотности почвы (a) и объемной влажности в слое 0–5 см (b) на исследуемых объектах в зависимости от технологии обработки почвы (1 – no-till, 2 – традиционная).

Скачать (760KB)
4. Рис. 3. Годовые потоки углерода по сезонам года на участках без обработки почвы (N) и с традиционной обработкой почвы (T), полученные по четырем вариантам расчета: однофакторные модели с предикторами – температура почвы (S), температура воздуха на участках измерения (A), температура воздуха метеостанции (М) и T&P-модель.

Скачать (1003KB)
5. Рис. 4. Содержание углерода (a) и накопительные кривые запасов углерода (b) по слоям почвы на участках с обработкой (1) и без обработки (2) почвы.

Скачать (599KB)

© Российская академия наук, 2025