Simple model for calculation of radiation parameters of a unidirectional flat openingv

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

A model for calculating the radiation parameters of a flat aperture in the far zone of free space is described. The electromagnetic field on the aperture is specified by the field of the primary polarized wave emanating from the excitation point. The radiating system is represented by Huygens elements. Verification of the reliability of the calculation result is carried out at the level of agreement with fundamental physical principles, with analytical calculations, and with the experimental results. When the antenna is excited by an arbitrary electric pulse, the calculation time of the radiation parameters in the time, space, and frequency domains is a few minutes. The calculation model is equipped with an interface in the style of MS Windows.

Толық мәтін

Рұқсат жабық

Авторлар туралы

V. Ostashev

Joint Institute for High Temperatures of Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: ostashev@ihed.ras.ru
Ресей, Izhorskaya str., 13, Bild. 2, Moscow, 125412

Әдебиет тізімі

  1. Марков Г. Т., Сазонов Д. М. Антенны. М.: Энергия, 1975.
  2. Skulkin S. P., Turchin V. I. // IEEE Trans. 1999. V. AP-47. № 5. P. 929.
  3. Skulkin S. P., Lysenko N. A., Uskov G. K., Kascheev N. I. // IEEE Antennas and Wireless Propagation Lett. 2019. V. 18. № 5. P. 1036. http: doi.org/10.1109/LAWP.2019.2908455
  4. Skulkin S. P., Lysenko N. A., Uskov G. K., Bobreshov A. M. // IEEE Antennas and Wireless Propagation Lett. 2020. V. 19. № 9. P. 1516. http: doi.org/10.1109/LAWP.2020.3008116
  5. Kурушин А. А., Пластиков А. Н. Проектирование СВЧ устройств в среде CST Microwave Studio. М.: МЭИ, 2011.
  6. Банков С. Е., Курушин А. А. Расчет излучаемых структур с помощью FEKO. М.: НПП «Родник», 2008.
  7. Вайнштейн Л. А. Электромагнитные волны. 2-е изд. М.: Радио и связь, 1988.
  8. Осташев В. Е., Ульянов А. В., Федоров В. М. // РЭ. 2020. Т. 65. № 3. С. 234.
  9. Осташев В. Е., Ульянов А. В. // РЭ. 2021. Т. 66. № 11. С. 1.
  10. Lee R. T., Smith G. S. // IEEE Antennas and Propagation Magazin. 2004. V. 46. № 1. P. 86.
  11. Осташев В. Е., Ульянов А. В. // РЭ. 2023. Т. 68. № 12. С. 1149.
  12. Авдеев В. Б. // Радиотехника. 1999. № 6. С. 96.
  13. Fedorov V. M., Efano M. V., Ostashev V. Ye. et al. // Electronics. 2021. V.10. № 9. Article No. 1009101. https://doi.org/10.3390/electronics10091011
  14. Введенский Б. А., Аренберг А. Г. Распространение ультракоротких радиоволн. М.: Сов. радио, 1938.
  15. MIL-STD-464C «Electromagnetic Environmental Effects Requirements for Systems». Wright-Patterson: AFB, 2010. 165 p. http://everyspec.com/MIL-STD/MIL-STD-0300–0499/MIL-STD-464C_28312.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Block diagram of the conversion of electrical impulse energy into radiation: G – generator, F – feeder, A – antenna.

Жүктеу (55KB)
3. Fig. 2. Geometry of the radiation formation region.

Жүктеу (87KB)
4. Fig. 3. Schematic diagram of the aperture antenna layout.

Жүктеу (97KB)
5. Fig. 4. Antenna excitation pulse (1) and pulse energy (2).

Жүктеу (64KB)
6. Fig. 5. The electric field strength of the radiation pulse in the H-plane of the aperture at angles of deviation from the antenna pattern axis of 0 (a), 10 (b), 20 (c) and 30 degrees (d): solid line – calculation, dashed line – experiment.

Жүктеу (139KB)
7. Fig. 6. Normalized DD of the antenna model: 1 – MDD; 2 – EDD (solid line – calculation, markers – experiment).

Жүктеу (59KB)
8. Fig. 7. Excitation pulse (a), RP of a circular synchronous aperture (b, curve 1), fraction of radiation energy η(φ) inside a cone with an opening angle of ±φ (b, curve 2).

Жүктеу (73KB)
9. Fig. 8. Antenna radiation pattern (1) and the fraction of radiation energy η(φ) inside a cone with an aperture angle of ±φ (2).

Жүктеу (70KB)
10. Fig. 9. Normalized dependence of energy Qeff on aperture size for Rvoz = 0.5 (1), 0.75 (2) and 1 m (3): solid line – square aperture, dotted line – round.

Жүктеу (67KB)
11. Fig. 10. Antenna excitation pulse in the form of a monocycle (a) and Gaussian (b).

Жүктеу (81KB)
12. Fig. 11. Normalized dependence of energy Qeff for a circular aperture excited from a distance Rex = 0.75 m by a radio pulse (1), a monocycle pulse (2) and a Gaussian pulse (3).

Жүктеу (70KB)
13. Fig. 12. Parameters of the radiation directionality of a synchronous (a) and optimal aperture (b) of the same diameter: 1 and 2 – normalized diagrams of the MDN and EDN; 3 – fraction of the radiation energy inside a solid angle with an aperture of ±φ.

Жүктеу (129KB)
14. Fig. 13. The fraction of the excitation energy of the IS emitted into space: 1 – excitation of the aperture by a radio pulse, 2 – by a monocycle pulse, 3 – by a Gaussian pulse; solid lines – synchronous excitation; markers – excitation of the aperture by pulses of types 2 and 3, asynchronous and non-uniform (from point A within the aperture observation angle of 30°).

Жүктеу (79KB)

© Russian Academy of Sciences, 2024