Ультразвуковая жидкостная экстракция с применением развитой кавитации в процессах утилизации отработанных литий-ионных аккумуляторов

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Схема ультразвуковой кавитационной экстракции использует растворение отработанного материала в глубоком эвтектическом растворителе для съема его с подложки с последующим извлечением ценного элемента методом ультразвуковых жидких мембран. Выполнено детальное описание этого метода для случая применения мощного ультразвука в типичных условиях кавитации, вызванной стоячими ультразвуковыми волнами, когда ее порог заметно превышен и процесс экстракции определяется кавитационными параметрами и ограничениями. Получено выражение для поведения во времени количества экстрагируемого элемента и зависимости этого параметра от величины акустического давления. Найдено пространственное распределение скорости акустического течения, вызванного кавитацией, в одномерном случае.

About the authors

О. М. Градов

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Author for correspondence.
Email: lutt.plm@igic.ras.ru
Russian Federation, Москва

И. В. Зиновьева

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Email: lutt.plm@igic.ras.ru
Russian Federation, Москва

Ю. А. Заходяева

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Email: lutt.plm@igic.ras.ru
Russian Federation, Москва

А. А. Вошкин

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Email: lutt.plm@igic.ras.ru
Russian Federation, Москва

References

  1. Li H., Eksteen, J., Oraby E. Hydrometallurgical recovery of metals from waste printed circuit boards (WPCBs): Current status and perspectives – A review. Resour., Conserv. Recycl. 2018. V. 139. P.2.
  2. Sun Z., Cao H., Xiao Y., Sietsma J., Jin W., Agterhuis H., Yang Y. Toward Sustainability for Recovery of Critical Metals from Electronic Waste: The Hydrochemistry Processes. ACS Sustainable Chem. Eng. 2016. V. 5. № 1. P. 21.
  3. Fedorova M.I., Zakhodyaeva Y.A., Baranchikov A.E., Krenev V.A., Voshkin A.A. Extraction reprocessing of Fe,Ni-containing parts of Ni–MH batteries. Russ. J. Inorg. Chem. 2021. V. 66. P. 266.
  4. Zakhodyaeva Y.A., Izyumova K.V., Solov’eva M.S., Voshkin A.A. Extraction separation of the components of leach liquors of batteries. // Theor. Found. Chem. Eng. 2017. V. 51. P. 883.
  5. Alvial-Hein G., Mahandra H., Ghahreman A. Separation and recovery of cobalt and nickel from end of life products via solvent extraction technique: A review. J. Clean. Prod. 2021. V. 297. P. 126592.
  6. Thompson D.L., Hartley J.M., Lambert S.M., Shiref M., Harper G.D.J., Kendrick E. et al. The importance of design in lithium ion battery recycling – a critical review. Green Chem. 2020. V. 22. P. 7585.
  7. Nitta N., Wu F., Lee J.T., Yushin G. Li-Ion Battery Materials: Present and Future // Materials Today. 2015. V. 18. P. 252.
  8. Harper G., Sommerville R., Kendrick E., Driscoll L., Slater P., Stolkin R. et al. Recycling lithium-ion batteries from electric vehicles // Nature. 2019. V. 575. P. 75.
  9. Xie J., Lu Y.-C.A. Retrospective on Lithium-Ion Batteries // Nat. Commun. 2020. V. 11. P. 2499.
  10. Torkaman R., Asadollahzadeh M., Torab-Mostaedi M., GhanadiMaragheh M. Recovery of cobalt from spent lithium ion batteries by using acidic and basic extractants in solvent extraction process // Sep. Purif. Technol. 2017. V. 186. P. 318.
  11. Fan E., Li L., Wang Z., Lin J., Huang Y., Yao Y., Chen R., Wu F. Sustainable Recycling Technology for Li-Ion Batteries and Beyond: Challenges and Future Prospects // Chem. Rev. 2020. V.1 20. P. 7020.
  12. Ma Y., Svärd M., Xiao X., Gardner J.M., Olsson R.T., Forsberg K. Precipitation and Crystallization used in the production of metal salts for li-ion battery materials: a review // Metals. 2020. V. 10. P. 1609.
  13. Zhang T., He Y., Ge L., Fu R., Zhang X., Huang, Y. Characteristics of wet and dry crushing methods in the recycling process of spent lithium-ion batteries // J. Power Sources. 2013. V. 240. P. 766.
  14. Chen L., Tang X., Zhang Y., Li L., Zeng Z., Zhang Y. Process for the recovery of cobalt oxalate from spent lithium-ion batteries // Hydrometallurgy. 2011. V. 108. P. 80.
  15. Li J., Shi P., Wang Z., Chen Y., Chang C.-C. A combined recovery process of metals in spent lithium-ion batteries // Chemosphere. 2009. V. 77. P. 1132.
  16. Wang M., Tan Q., Liu L., Li J. Efficient separation of aluminum foil and cathode materials from spent lithium-ion batteries using a low-temperature molten salt // ACS Sustain Chem. Eng. 2019. V. 7. P. 8287.
  17. Zou H., Gratz E., Apelian D., Wang Y.A Novel method to recycle mixed cathode materials for lithium ion batteries // Green Chemistry. 2013. V. 15. P. 1183.
  18. Zeng X., Li J. Innovative application of ionic liquid to separate al and cathode materials from spent high-power lithium-ion batteries // J. Hazard Mater. 2014. V. 271. P. 50.
  19. Gu K., Chang J., Mao X., Zeng H., Qin W., Han J. Efficient separation of cathode materials and al foils from spent lithium batteries with glycerol heating: a green and unconventional way // J. Clean Prod. 2022. V. 369. P. 133270.
  20. Wang H., Liu J., Bai X., Wang S., Yang D., Fu Y., He Y. Separation of the cathode materials from the al foil in spent lithium-ion batteries by cryogenic grinding // Waste Management. 2019. V. 91. P. 89.
  21. Zinov’eva I.V., Fedorov A.Ya., Milevskii N.A., Zakhodyaeva Yu.A., Voshkin A.A. Dissolution of metal oxides in a choline chloride–sulphosalicylic acid deep eutectic solvent // Theor. Found. Chem. Eng. 2021. V. 55. P. 663.
  22. Ijardar S.P., Singh V., Gardas R.L. Revisiting the physicochemical properties and applications of deep eutectic solvents // Molecules. 2022. V. 27. P. 1368.
  23. Gradov O.M., Zinov’eva I. V., Zakhodyaeva Y.A., Voshkin A.A. Modelling of the erosive dissolution of metal oxides in a deep eutectic solvent-choline chloride/sulfosalicylic acid-assisted by ultrasonic cavitation // Metals. 2021. V. 11. P. 1964.
  24. Zinov’eva I. V., Fedorov A.Ya., Milevskii N.A., Zakhodyaeva Yu.A., Voshkin A.A. A deep eutectic solvent based on choline chloride and sulfosalicylic acid: properties and applications // Theor. Found. Chem. Eng. 2021. V. 55. P. 371.
  25. Gradov O.M., Zinov’eva I.V., Zakhodyaeva Yu.A., Voshkin A.A. Kinetics of ultrasonic dissolution of metal oxide powder for different spatial combinations of the cavitation region and eckart acoustic flow // Theor. Found. Chem. Eng. 2023. V. 57. P. 255.
  26. Gradov O.M., Zakhodyaeva Yu.A., Zinov’eva I.V. and Voshkin A.A. Some features of the ultrasonic liquid extraction of metal ions. // Molecules. 2019. V. 24. 3549.
  27. Gradov O.M., Zakhodyaeva Yu.A., Voshkin A.A. Dynamics of mass transfer through the interface between immiscible liquids under the resonance effect of ultrasound // Theor. Found. Chem. Eng. 2020. V. 54. № 6. P. 1148.
  28. Gradov O.M., Zakhodyaeva Yu.A., Zinov’eva I.V., Voshkin A.A. Ultrasonic intensification of mass transfer in organic acid extraction // Processes. 2021. V. 9. P. 15.
  29. Flynn H.G. Physics of Acoustic Cavitations in Liquids // Physical acoustics – Principles and methods. N.Y.: Academic Press, 1964. P. 376.
  30. Gradov O.M., Zakhodyaeva Yu.A., Voshkin A.A. Breakup of immiscible liquids at the interface using high-power acoustic pulses // Chem. Eng. Proc.: Proc. Intens. 2018. V. 131. P. 125.
  31. Voshkin A.A., Gradov O.M. Parametric splitting and transfer of liquid cuts for the intensification of mass exchange in a cylindrical volume // Theor. Found. Chem. Eng. 2017, V. 51. № 3. P. 274.
  32. Розенберг Л.Д. Кавитационная область. Мощные ультразвуковые поля / Под ред. Л.Д. Розенберга, Наука, 1968. С. 221.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences