Crystallization and solubility of KSc(SO4)2 for improving the efficiency of scandium extraction
- 作者: Medyankina I.S.1, Pasechnik L.A.1
-
隶属关系:
- Institute of Solid State Chemistry of Ural Branch of RAS
- 期: 卷 59, 编号 1 (2025)
- 页面: 86–93
- 栏目: Articles
- ##submission.datePublished##: 02.07.2025
- URL: https://ruspoj.com/0040-3571/article/view/686517
- DOI: https://doi.org/10.31857/S0040357125010105
- EDN: https://elibrary.ru/txgauq
- ID: 686517
如何引用文章
详细
In the development of methods for the efficient extraction and concentration of rare earth elements (REE), as well as for the removal of impurities of related metals, the solubility of salts, in particular sulfates, often used in hydrometallurgy as intermediates, is of great importance. In this work, the precipitation of complex potassium scandium sulfate KSc(SO4)2, whose crystals are elongated hexagonal prisms 5–10 μm wide and 20–50 μm long, was proposed for the extraction of scandium from sulfate solutions. The absence of crystallization water and the presence of a reversible phase transition around 447°C are shown by DTA method. The solubility of KSc(SO4)2 in water at 25°C was 0.28±0.01 wt.% Sc. A decrease in the solubility of KSc(SO4)2 was achieved by increasing the concentration of sulfuric acid (H2SO4) over 3–4 mol/L. Additional introduction of 0.5 mol/L K2SO4 reduces the solubility of scandium as a complex compound by an order of magnitude and increases the efficiency of scandium extraction from sulfate solutions. Experimental results on the solubility of KSc(SO4)2 are described by the change in the ionic strength of the solution in the presence of homonymous ions (K+ and HSO4–). The degree of scandium extraction from sulfate solutions with the addition of 0.5 mol/L K2SO4 is more than 99%. The principal technological scheme of scandium extraction from red slimes with crystallization of KSc(SO4)2 is proposed. The results will be useful for the development of methods of metal separation at sulfuric acid processing of raw materials and expansion of methods for obtaining concentrates and pure metal oxides, as well as for studying the behavior of REE compounds close in properties.
全文:

作者简介
I. Medyankina
Institute of Solid State Chemistry of Ural Branch of RAS
Email: pasechnik@ihim.uran.ru
俄罗斯联邦, Yekaterinburg
L. Pasechnik
Institute of Solid State Chemistry of Ural Branch of RAS
编辑信件的主要联系方式.
Email: pasechnik@ihim.uran.ru
俄罗斯联邦, Yekaterinburg
参考
- Гилярова А.А. Редкоземельные металлы: применение в Hi-Tech и потенциал Кольского полуострова // Экономика и бизнес: теория и практика. 2018. №3. С. 40. ID: 32794608. [Giliarova A.A. Rare earth metals: application of Hi-Tech and potential of Kola peninsula // Economics and business: theory and practice. 2018. №. 3. Р. 40. ID: 32794608]
- Кондратьев В.Б. Глобальный рынок редкоземельных металлов / В.Б. Кондратьев // Горная промышленность. 2017. Т. 4 № 134. С. 97. ID: 29987254. [Kondratiev V.B. The global market of rare earth metals // Mining Industry. 2017. V. 4. № 134. Р. 97].
- Соловьева В.М., Череповицын А.Е. Организационно-экономические модели развития редкоземельных промышленных комплексов: российский и зарубежный опыт // Вестник ЮРГТУ (НПИ). 2021. № 1. С. 188. doi: 10.17213/2075-2067-2021-1-188-202. [Solovyova V.M., Cherepovitsyn А.E. Organizational and Economic Models of Rare Earth Industrial Complexes’ Development: Russian and Foreign Experience // Bull. SRSTU (NPI) Ser. Socio-Economic Sci. 2021. V. 14. №. 1. Р. 188.
- Abhijeet R.K., Dhoble S.J. Thermoluminescence versatility in sulfate-based phosphors. Ch. 15. Series in Electronic and Optical Materials. Phosphor Handbook: Woodhead Publishing, 2023. Р. 331. doi: 10.1016/B978-0-323-90539-8.00008-5.
- Junne T., Wulff N., Breyer C., Naegler T. Critical materials in global low-carbon energy scenarios: The case for neodymium, dysprosium, lithium, and cobalt // Energy. 2020. V. 211, art. 118532. doi: 10.1016/j.energy.2020.118532.
- Thompson V. S., Gupta M., Jin H. et al. Techno-economic and life cycle analysis for bioleaching rare-earth elements from waste materials // ACS Sustainable Chemistry and Engineering. 2018. V. 6. №. 2. Р. 1602. doi: 10.1021/acssuschemeng.7b02771
- Кожевникова А.В., Уварова Е.С., Милевский Н.А., Заходяева Ю.А., Вошкин А.А. Выделение концентрата Ti(IV) из отработанных литий-ионных аккумуляторов // Теорет. основы хим. технологии. 2023. Т. 57. № 5. C. 553. doi: 10.31857/S0040357123050111 [Kozhevnikova A.V., Uvarova E.S., Milyavsky N.A., Zakhodyaeva Yu.A., Voshkin A.A. Isolation of Ti(IV) concentrate from spent lithium-ion batteries // Theor. Found. Chem. Eng. V. 57. №. 5. Р. 553]
- Sethurajan M., van Hullebusch E. D., Fontana D. et al. Recent advances on hydrometallurgical recovery of critical and precious elements from end-of-life electronic wastes – A review // Crit. Rev. Environ. Sci. Technol. 2019. V. 49. №. 3. Р. 212. doi: 10.1080/10643389.2018.1540760
- Costis S., Mueller K.K., Coudert L. et al. Recovery potential of rare earth elements from mining and industrial residues: a review and cases studies // J. Geochem. Explor. 2021. V. 221. P. 106699. doi: 10.1016/j.gexplo.2020.106699.
- Rychkov V.N., Kirillov E.V., Kirillov S.V. Recovery of rare earth elements from phosphogypsum // J. Clean. Prod. 2018. V. 196. P. 674. doi: 10.1016/j.jclepro.2018.06.114
- Локшин Э.П., Тареева О.А. Разработка технологий извлечения редкоземельных элементов при сернокислотной переработке Хибинского апатитового концентрата на минеральные удобрения. Апатиты: КНЦ РАН, 2015. [Lokshin E.P., Tareeva O.A. Technologies development for the extraction of rare earth elements while sulfuric acid processing of the Khibiny apatite concentrate for mineral fertilizers production. Apatity: KSC RAS, 2015.].
- Zhou B., Li Z., Chen C. Global potential of rare earth resources and rare earth demand from clean technologies // Minerals. 2017. V. 7. Iss. 11. № 203. doi: 10.3390/min7110203
- Liu F., Peng C., Porvali A. et al. Synergistic recovery of valuable metals from spent nickel–metal hydride batteries and lithium-ion batteries // ACS Sustain. Chem. Eng. 2019. V. 7. № 19. Р. 16103. https://doi.org/10.1021/acssuschemeng.9b02863
- Cassayre L., Guzhov B., Zielinski M., Biscans B. Chemical processes for the recovery of valuable metals from spent nickel metal hydride batteries: A review // Renewable and Sustainable Energy Reviews. 2022. V. 170. Art. 112983. doi: 10.1016/j.rser.2022.112983.
- Abrahami S.T, Xiao Y, Yang Y. Rare-earth elements recovery from post-consumer hard-disc drives // Mineral Processing and Extractive Metallurgy. 2015. V. 124. Iss. 2. P. 106. doi: 10.1179/1743285514Y.0000000084
- Sahoo P. K., Kim K., Powell M. A., Equeenuddin S. Recovery of metals and other beneficial products from coal fly ash: a sustainable approach for fly ash management // International Journal of Coal Science & Technology. 2016. V. 3. Iss. 3. P. 267. doi: 10.1007/s40789-016-0141-2
- Tan Q., Li J., Zeng X. Rare earth elements recovery from waste fluorescent lamps: a review // Critical Reviews in Environmental Science and Technology. 2015. Vol. 45. Iss. 7. P. 749. doi: 10.1080/10643389.2014.900240
- Chen L., Chen W., Chen P. Selective extraction of lithium and REEs from waste rare earth polishing powder: A two-stage leaching technique // Separation and Purification Technology. 2025. V. 353. Part C. art. 128524. doi: 10.1016/j.seppur.2024.128524.
- Masmoudi-Soussi A., Hammas-Nasri I., Horchani-Naifer K., Férid M. Rare earths recovery by fractional precipitation from a sulfuric leach liquor obtained after phosphogypsum processing // Hydrometallurgy. 2020. V. 191. art. 105253. doi: 10.1016/j.hydromet.2020.105253.
- Erust C., Karacahan M. K., Uysal P.T. Hydrometallurgical roadmaps and future strategies for recovery of rare earth elements // Miner. Process. Extr. Metall. Rev. 2023. V. 44. № 6. P. 436. doi: 10.1080/08827508.2022.2073591.
- Chen L., He X., Dang X. et al. Rare earth dissolution from polishing powder waste in H2O2-H2SO4 system: condition optimization and leaching mechanism // Hydrometallurgy. 2024. V. 224. art. 106248. doi: 10.1016/j.hydromet.2023.106248.
- Li W., Li Z., Wang N., Gu H. Selective extraction of rare earth elements from red mud using oxalic and sulfuric acids // Journal of Environmental Chemical Engineering. 2022. V. 10, art. 108650. doi: 10.1016/j.jece.2022.108650.
- Ding W., Bao S., Zhang Y., Xiao J. Efficient selective extraction of scandium from red mud // Miner. Process. Extr. Metall. Rev. 2022. V. 44. № 4. Р. 304. doi: 10.1080/08827508.2022.2047044.
- Das G., Lencka M.M., Eslamimanesh A. et al. Rare earth sulfates in aqueous systems: thermodynamic modeling of binary and multicomponent systems over wide concentration and temperature ranges // J. Chem. Thermodyn. 2019. V. 131. P. 49. doi: 10.1016/j.jct.2018.10.020.
- Judge W.D., Ng K.L., Moldoveanu G.A. et al. Solubilities of heavy rare earth sulfates in water (gadolinium to lutetium) and H2SO4 solutions dysprosium // Hydrometallurgy. 2023. V. 218. art. 106054. doi: 10.1016/j.hydromet.2023.106054.
- Kul M., Topkaya Y., Karakaya İ. Rare earth double sulfates from pre-concentrated bastnasite // Hydrometallurgy. 2008. V. 93. Iss. 3-4. P. 129 doi: 10.1016/j.hydromet.2007.11.008.
- Pietrelli L., Bellomo B., Fontana D., Montereali M.R. Rare earths recovery from NiMH spent batteries // Hydrometallurgy. 2002. V. 66. Iss. 1-3. P. 135. doi: 10.1016/S0304-386X(02)00107-X.
- Said A., Lundström M., Louhi-Kultanen M. Recovery of lanthanum from aqueous solutions by crystallization as lanthanum sodium sulfate double salt // Miner. Met. Mater. Ser. 2022. V. 74. P. 3010. doi: 10.1007/s11837-022-05259-3.
- Шеллер В.Р., Поуэлл А.Р. Анализ минералов и руд редких элементов; пер. с англ. М.: Госгеолтехиздат, 1962. [Scheller V.R., Powell A.R. Analysis of minerals and ores of rare elements. M.: Gosgeoltehizdat, 1962]
- Гиллебранд В.Ф., Лэндель Г.Э., Брайт Г.А., Гофман Д.И. Практическое руководство по неорганическому анализу. М: Химия, 1966. [Gillebrand V.F., Landel G.E., Bright G.A., Hoffman D.I. Practical guide to inorganic analysis. M: Chemistry, 1966].
- В.П. Волков, А.П. Гущин, Б.А. Соловьев и др. Способ разделения скандия и редкоземельных элементов. Патент № 2079431 РФ. 1997. [Volkov V.P., Gushchin A.P., Solovyov B.A. et al. Method of separation of scandium and rare earth elements. Pat. № 2079431 RU. 1997].
- Pasechnik L.A., Skachkov V.M., Chufarov A.Yu. et al. High purity scandium extraction from red mud by novel simple technology // Hydrometallurgy. 2021. V. 202. art. 105597. doi: 10.1016/j.hydromet.2021.105597.
- Pasechnik L.A., O.A. Lipina, I.S. Medyankina et al. Crystal structure and optical properties of Eu3+–doped and undoped complex sulfate KSc(SO4)2 produced by facile and efficient crystallization process // J. Alloys Compd. 2024. V. 984, art. 173968. doi: 10.1016/j.jallcom.2024.173968.
- Pasechnik L.A., Medyankina I.S., Tyutyunnik A.P., Bamburov V.G. Solubility of scandium-cesium double sulfate CsSc(SO4)2 in sulfuric acid solutions // Russ. J. Inorg. Chem. 2023. V. 68. № 12. Р. 1799. doi: 10.31857/S0044457X23601268. [Пасечник Л.А., Медянкина И.С., Тютюнник А.П., Бамбуров В.Г. Растворимость двойного сульфата скандия–цезия CsSc(SO4)2 в сернокислых растворах // Журн. неорг. химии. 2023. Т. 68. № 12. С. 1799.]
- Воскобойников Н.Б., Скиба С.Г. Новые методы исследования растворимости в водно-солевых системах. Л.: Наука, 1986. [Voskoboynikov N.B., Skiba S.G. New methods for studying solubility in water-salt systems. L.: Nauka, 1986].
- Башков Б.И., Комиссарова Л.Н., Шацкий В.М. Изучение растворимости в системе K2SO4–Sc2(SO4)3–H2SO4 при 25°С // Журн. неорг. химии. 1970. Т. 15. № 5. С. 1362. [Bashkov B.I., Komissarova L.N., Shatsky V.M. The study of solubility in the K2SO4–Sc2(SO4)3–H2SO4 system at 25°C // Russ. J. Inorg. Chem. 1970. V. 15. № 5. P. 1362.]
- Коротаева Л.Г., Ремизов В.Г., Дударева А.Г., Арагон Х.А. Системы сульфат калия и рубидия – сульфат скандия // Журн. неорг. химии. 1975. Т. 20. № 8. С. 2197. [Korotaeva L.G., Remizov V.G., Dudareva A.G., Alejandro Aragon H. Systems of potassium sulfate and rubidium – scandium sulfate // Russ. J. Inorg. Chem. 1975. V. 20. № 8. Р. 2197.]
- Korytnaya F.M., Pokrovsky A.N., P.A. Degtyarev Investigation of Phase Equilibriums in the systems K2SO4–Sc2(SO4)3, Rb2SO4–Sc2(SO4)3 and Cs2SO4–Sc2(SO4)3 // Thermochim Acta. 1980. V. 41. P. 141. doi: 10.1016/0040-6031(80)80058-x.
- Корытная Ф.М., Путилин С.Н., Покровский А.Н. Исследование двойных сульфатов щелочных металлов и скандия методом высокотемпературной рентгенографии // Журн. неорг. химии. 1983. Т. 28. С. 1716. [Korytnaya F.M., Putilin S.N., Pokrovsky A.N. Investigation of double sulfates of alkali metals and scandium by high-temperature radiography // Russ. J. Inorg. Chem. 1983. V. 28. P. 1716.]
- Han K.N., Kim R. Thermodynamic Analysis of Precipitation Characteristics of Rare Earth Elements with Sulfate in Comparison with Other Common Precipitants // Minerals. 2021. V. 11. № 7, art. 670. doi: 10.3390/min11070670 https://doi.org/10.1016/j.jct.2018.10.020.
- Пягай И.Н., Кожевников В.Л., Пасечник Л.А., Скачков В.М. Переработка отвального шлама глиноземного производства с извлечением скандиевого концентрата // Записки Горного института. 2016. Т. 218. С. 225. ID: 26021511. [Pyagai I.N., Kozhevnikov V.L., Pasechnik L.A., Skachkov V.M. Processing of alumina production red mud with recovery of scandium concentrate // J. Mining Inst. 2016. V. 218. P. 225.]
补充文件
