Современное состояние углеродной энергетики

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

На основе данных научных центров и результатов долгосрочных научных проектов проанализированы тепловое состояние Земли и глобальные процессы, протекающие в атмосфере и на поверхности. Анализ выполнен в форме числовых оценок, и на их основе построена физическая картина глобальных процессов с участием углерода и углекислого газа. Показано, что парниковый эффект за счет антропогенного углекислого газа, инжектируемого в атмосферу, не является главной причиной наблюдаемого в последние десятилетия роста глобальной температуры, который в свою очередь мал по сравнению с изменениями в прошлом. Рост концентрации углекислого газа в атмосфере при ее современных значениях не влияет на здоровье человека, но увеличивает эффективность фотосинтеза, так что урожаи сельскохозяйственных культур за индустриальный период выросли в полтора раза. Истощение ресурсов ископаемых газа и нефти в этом веке делает актуальной задачу производства синтетического жидкого и газообразного топлива из угля. Показано, что замена метана как топлива водородом наряду с низкой эффективностью ведет также к большим рискам при массовом использовании.

Full Text

Restricted Access

About the authors

Б. М. Смирнов

Объединенный институт высоких температур РАН

Author for correspondence.
Email: bmsmirnov@gmail.com
Russian Federation, Москва

References

  1. Fossil Fuels. Washington, DC: Environmental Energy Study Institute. https://www.eesi.org/topics/fossil-fuels/description
  2. Global Energy Perspective 2022. Report. McKinsey & Company, 2022. https://www.mckinsey.com/industries/oil-and-gas/our-insights/global-energy-perspective-2022
  3. World Energy Balances: Overview. Report. The International Energy Agency, 2021. https://www.iea.org/reports/world-energy-balances-overview/world
  4. World Population by Year. Worldometer. https://www.worldometers.info/world-population/world-population-by-year
  5. World Energy Supply and Consumption. https://en.wikipedia.org/wiki/World_energy_supply_and_consumption
  6. Distribution of Electricity Generation Worldwide in 2023, by Energy Source. https://www.statista.com/statistics/269811/world-electricity-production-by-energy-source/
  7. Global Primary Energy Consumption by Source. https://ourworldindata.org/grapher/global-energy-substitution
  8. Fossil Fuels Remain Strong in 2022 Globally, Despite Increases in Renewable Energy. Institute for Energy Research, 2023. https://www.instituteforenergyresearch.org/international-issues/fossil-fuels-remain-strong-in-2022-globally
  9. The Global Carbon Project. http://www.globalcarbonproject.org
  10. Friedlingstein P., O’Sullivan M., Jones M.W. et al. Global Carbon Budget 2018 // Earth Syst. Sci. Data. 2019. V. 11. P. 1783.
  11. Friedlingstein P., O’Sullivan M., Jones M.W. et al. Global Carbon Budget 2021 // Earth Syst. Sci. Data. 2022. V. 14. P. 4811.
  12. Smirnov B.M. Global Energetics of the Atmosphere. Springer Atmospheric Sciences. Switzerland: Springer, 2021. 301 p.
  13. Grosjean M., Goiot J., Yu Z. Scrutinizing the Carbon Cycle and CO2 Residence Time in the Atmosphere // Global Planet Change. 2017. V. 152. P. 19.
  14. Smirnov B.M. Microphysics of Atmospheric Phenomena. Springer Atmospheric Sciences. Switzerland: Springer, 2017. 270 p.
  15. Mauna Loa Observatory. https://en.wikipedia.org/wiki/Mauna-Loa-Observatory
  16. Trends in Atmospheric Carbon Dioxide (CO2). Earth System Research Laboratories. Global Monitoring Laboratory. https://gml.noaa.gov/ccgg/trends
  17. https://gml.noaa.gov/webdata/ccgg/trends/co2/co2_mm_mlo.txt
  18. http://unfccc.int/resource/docs/2015/cop21.
  19. Paleoclimatology. https://en.wikipedia.org/wiki/Paleoclimatology
  20. Jouzel J., Masson-Delmotte V., Cattani J.O. et al. Orbital and Millennial Antarctic Climate Variability over the Past 800,000 // Science. 2007. V. 317. P. 793.
  21. Lüthi D., Le Floch M., Bereiter B. et al. High-resolution Carbon Dioxide Concentration Record 650,000–800,000 Years Before Present // Nature. 2008. V. 453. P. 379.
  22. Atmospheric Carbon Dioxide (CO2). https://www.climate4you.com/GreenhouseGasses.htm#Atmos pheric%20carbon%20dioxide%20(CO2)
  23. Hansen J.E., Johnson D., Lacis A. et al. Climate Impact of Increasing Atmospheric Carbon Dioxide // Science. 1981. V. 213. P. 957.
  24. Hansen J., Sato M., Ruedy R., Schmidt G.A., Lo K. Global Temperature in 2015, 2016. http://www.columbia.edu/~jeh1/mailings/2016/20160120_Temperature2015.pdf.
  25. Climate Change 2013. The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Summary for Policymakers. Switzerland: Intergovernmental Panel on Climate Change, 2013. https://www.ipcc.ch/site/assets/uploads/2018/03/WGIAR5_SPM_brochure_en.pdf.
  26. May 2018 Global Climate Report. NOAA National Centers for Environmental Information. https://www.ncdc.noaa.gov/sotc/global/201805
  27. May 2019 Global Climate Report. NOAA National Centers for Environmental Information. https://www.ncdc.noaa.gov/sotc/global/201905
  28. July 2022 Global Climate Report. NOAA National Centers for Environmental Information. https://www.ncei.noaa.gov/access/monitoring/monthly-report/global/202207
  29. Goody R.M. Atmospheric Radiation: Theoretical Basis. London: Oxford Univ. Press, 1964. 435 p.
  30. Goody R.M., Yung Y.L. Principles of Atmospheric Physics and Chemistry. N.Y.: Oxford Univ. Press, 1995. 544 p.
  31. Center for Astrophysics, Harvard & Smithsonian. https://www.cfa.harvard.edu/
  32. HITRAN. http://www.hitran.iao.ru/home
  33. Definitions and Units: Line-by-line Parameters. https://hitran.org/docs/definitions-and-units/
  34. U.S. Standard Atmosphere. Washington: U.S. Government Printing Office, 1976. 241 p.
  35. Смирнов Б.М. Инфракрасное излучение в энергетике атмосферы // ТВТ. 2019. Т. 57. № 4 С. 609.
  36. Smirnov B.M. Transport of Infrared Atmospheric Radiation. Berlin: de Gruyter, 2020. 250 p.
  37. Smirnov B.M., Zhilyaev D.A. Greenhouse Effect in the Standard Atmosphere // Foundation. 2021. V. 1. P. 184.
  38. Bunsen R., Kirchhoff G. Chemische Analyse durch Spectralbeobachtungen // Annalen der Physik und Chemie. 1860. Bd. 110. S. 161.
  39. Smirnov B.M. Interaction of radiative molecules in gas emission // Int. Rev. At. Mol. Phys. 2019. V. 10. P. 39.
  40. Smirnov B.M. Atmospheric Carbon Dioxide and Climate // J. Atmos. Sci. Res. 2019. V. 2. № 4. P. 21.
  41. Жиляев Д.А., Смирнов Б.М. Закон Кирхгофа при эмиссии смеси молекулярных газов // ЖЭТФ. 2021. Т. 133. С. 687.
  42. Смирнов Б.М. Проблемы глобальной энергетики атмосферы // ТВТ. 2021. Т. 59. № 4. С. 589.
  43. Pleil J.D., Wallace M.A.G., Davis M.D., Matty D.C.M. Human Breathing // J. Breath Res. 2021. V. 15. P. 042002.
  44. Malthus T.R. An Essay on the Principle of Population. London: St. Paul’s Churchyard, 1798. 104 p.
  45. Worldwide Production of Grain in 2023/24, by Type (in Million Metric Tons). https://www.statista.com/statistics/263977/world-grain-production-by-type/.
  46. Cereal. https://en.wikipedia.org/wiki/Cereal
  47. Roser M., Ritchie H., Rosado P. Food Supply. https://ourworldindata.org/food-supply
  48. Evans N. Humanity’s Hindenburg. 2017. https://www.ohiohistory.org/humanitys-hindenburg/
  49. Hindenburg Disaster. https://en.wikipedia.org/wiki/Hindenburg_disaster
  50. Гинденбург (дирижабль). https://ru.wikipedia.org/wiki/Гинденбург_(дирижабль)
  51. Ракетное топливо. https://ru.wikipedia.org/wiki/Ракетное_топливо
  52. Катастрофа на Байконуре (1960). https://ru.wiki-pedia.org/wiki/Катастрофа_на_Байконуре_(1960) .
  53. Fischer–Tropsch Process. https://en.wikipedia.org/wiki/Fischer–Tropsch_process
  54. Syngas. https://en.wikipedia.org/wiki/Syngas
  55. Supercritical Steam Generator. https://en.wikipedia.org/wiki/Supercritical_steam_generator

Supplementary files

Supplementary Files
Action
1. JATS XML
2. 1. Annual global energy production: 1 – total, 2 – as a result of burning of combustible minerals [7].

Download (62KB)
3. 2. Annual global energy production from combustible minerals [7]: 1 – oil, 2 – coal, 3 – gas.

Download (74KB)
4. 3. The share of carbon energy in total energy production [7].

Download (58KB)
5. 4. The share of various combustible minerals in energy production within the framework of carbon energy [7]: 1 – oil, 2 – coal, 3 – gas.

Download (70KB)
6. Fig. 5. The concentration of carbon dioxide molecules in the Earth's atmosphere expressed in ppm according to monitoring performed at the Manua Loa Observatory, averaged over a month and a year over the entire lifetime of the observatory (a) and over the last five years (b) [16].

Download (145KB)
7. 6. Annual increase in the concentration of carbon dioxide molecules in the atmosphere at present [17].

Download (69KB)
8. Fig. 7. The share of carbon that, after extraction from the Earth's interior in the form of combustible fossils, passes into atmospheric carbon dioxide, followed by transfer to the atmosphere and biomass; carbon dioxide emissions into the atmosphere relate to the corresponding decade and to 2018 [10, 11].

Download (83KB)
9. 8. The simplified nature of the evolution of global temperature in recent decades as a result of the exclusion of fluctuations [12].

Download (48KB)
10. 9. The ratio of the partial radiation flux ∆Jω(CO2) produced by carbon dioxide molecules to the total radiation flux: (a) is the area of the lower absorption band of carbon dioxide molecules; (b), (c) are the absorption frequency bands used in carbon dioxide lasers.

Download (159KB)
11. 10. Explosion of the Hindenburg airship in New York [48].

Download (93KB)

Copyright (c) 2024 Russian Academy of Sciences