О влиянии температуры оксидирования на структуру термооксидных покрытий-абсорберов солнечного излучения на поверхности стали Х18Н10Т

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Исследовано влияние температуры оксидирования на состав и структуру покрытий-абсорберов солнечного излучения, полученных термическим оксидированием высокохромистой стали Х18Н10Т при 400°–800°С. Состав и структуру пленок контролировали методами сканирующей электронной микроскопии с рентгеновским зондом и ИК-спектроскопии. Показано, что тонкие термооксидные слои толщиной 400–500 А, формируемые при оксидировании стали при 500°–700°С, имеют оксид-оксидную композитную структуру, обладают высоким поглощением и выраженным фотоэлектрическим откликом в спектральных областях видимого солнечного излучения. Показано, что эффективность спектрально-селективных покрытий-абсорберов солнечного излучения полученных термическим оксидированием высокохромистой стали Х18Н10Т при 500°–700°С, связана с формированием на поверхности стали двухслойной оксид-оксидной структуры: прилегающего к поверхности стали композитного слоя гранул FeCr2O4 в матрице избыточной закиси железа и шпинели переменного состава в матрице внешнего слоя магнетита.

Texto integral

Acesso é fechado

Sobre autores

В. Котенев

Институт физической химии и электрохимии им. А.Н. Фрумкина РАН

Autor responsável pela correspondência
Email: m-protect@mail.ru
Rússia, Ленинский просп., 31, Москва, 119071

Bibliografia

  1. Kalogirou S.A. // Progress in Energy and Combustion Science, 2004, V. 30, № 3, P. 231–295.
  2. Evangelisti Luca, De Lieto Vollaro Roberto, Asdrubali Francesco // Renewable and Sustainable Energy Reviews. 2019. V. 114. P. 109318.
  3. Ghobadi B., Kowsary F. & Veysi F. // Prot. Met. Phys. Chem. Surf. 2022. V. 58. P. 486–500.
  4. Kennedy C.E. Review of mid-tohigh-temperature solar selective absorber materials. United States: National Renewable Energy Laboratory. 2002 NREL/TP-520-31267. July.
  5. Boriskina S.V., Ghasemi H. and Chen G. // Materials Today, 2013, V. 16, № 10. P. 375–386.
  6. Iakobson O.D., Gribkova O.L. & Tameev A.R. // Prot. Met. Phys. Chem. Surf. 2021. V. 57. P. 753–759.
  7. Demirbilek N., Yakuphanoğlu F. & Kaya M. // Prot. Met. Phys. Chem. Surf. 2021. V. 57, P. 488–499.
  8. Medina-Almazán, A.L., López-García, N., Marín-Almazo, M. et al. // Prot. Met. Phys. Chem. Surf. 2021. V. 57. P. 723–734.
  9. López-Marino S., et.al. // Sol.Energy Mater. Sol.Cells. 2014. V. 130. P. 347–53.
  10. Zhorin, V.A., Kiselev, M.R., Vysotsky, V.V. et al. // Prot. Met. Phys. Chem. Surf. 2021. V. 57. P. 52–58.
  11. Kumar D., Singh A., Shinde V. et al. // Prot. Met. Phys. Chem. Surf. 2022. V. 58. P. 999–1010.
  12. Zahra S.t., Syed W.A., Rafiq N. et al. // Prot. Met. Phys. Chem. Surf. 2021. V. 57. P. 321–328.
  13. Roos A., Ribbing C.G., Carlsson B. // Solar Energy Materials. 1989. V. 18. № 5. P. 233–240.
  14. Azzam R.M.A., Bashara N.M. Ellipsometry and Polarized Light. North-Holland. Amsterdam. 1977.
  15. Cavas M., Gupta R.K., Al-Ghamdi A.A., Gafer Z.H., El-Tantawy F., Yakuphanoglu F. // Materials Letters. 2013. V. 105. P. 106–109.
  16. Hwang K.J., Jung S.H., Park D.W., Yoo S.J., Lee J.W. // Curr.Appl.Phys. 2010. V. 10. C.184.
  17. Daothong S. // Key Engineering Materials. 2017. V. 766. P. 217–222.
  18. Kotenev V.A. // Prot. Met. Phys. Chem. Surf. 2023. V. 59. № 4. P. 577–586.
  19. Котенев В.А., Зимина Т.Ю. // Защита металлов. 2002. Т. 38. № 6. С. 640–644.
  20. Беннет Х.Е., Беннет Дж.М. Прецизионные измерения в оптике тонких пленок . Cб.: Физика тонких пленок. Под ред. Хасса Г., Туна Р.Э. М.: Мир. 1970. T. 4, C. 7.
  21. Прикладная инфракрасная спектроскопия. Под ред. Кендалла Д. М. : Мир. 1970. 376 с.
  22. Valkonen E., Karlsson B. // Solar Energy Materials. 1982. V. 7. P. 43–50.
  23. Котенев В.А. // Защита металлов. 2001. T. 37. № 6. P. 565–577.
  24. Борн М., Вольф Э. Основы оптики. М.: Наука. 1973. С. 66 . (M.Born, E.Wolf. Principles of optics. Oxford: Pergamon Press. 1968.
  25. Mertens P.P. // National Association of Corrosion Engineers. 1978. V. 34. № 10. P. 359.
  26. N. Karimi, F. Riffard, F. Rabaste, S. Perrier, R. Cueff, C. Issartel, H. Buscail // Applied Surface Science. 2008. V. 254. P. 2292–2299.
  27. Окисление металлов. Под ред. Ж Бенара. М.: Металлургия. 1968. Т.2. 448 с. (Oxydation des Metaux. Sous la direction de J. Benard. Paris: Gauthier-Villars. 1962. V. 2).
  28. Мровец С., Вербер Т. Современные жаростойкие материалы. Справочник. М. : Металлургия, 1986. 360 с.
  29. Moreau J.C., Benard J. // C.R. Acad. Sci. 1953. V. 236. P. 85.
  30. Moreau J.C., Benard J. // C.R. Acad. Sci. 1953. V. 237. P. 417.
  31. Kotenev V.A. // Prot. Met. Phys. Chem. Surf. 2021. V. 57. P. 1150–1158.
  32. Kotenev V.A. // Prot. Met. Phys. Chem. Surf. 2021. V. 57. P. 1097–1104.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Relative changes in the micro-stage average energy reflection coefficient R normalized for the initial sample of steel X18H10T at wavelengths of 440nm, 540 nm, and 640 nm during 1 hour of oxidation at temperature T.

Baixar (70KB)
3. 2. Electron microscopic images of the surface of the oxidized alloy: light areas correspond to a thick layer of the oxide phase, dark areas correspond to a thin oxide.

Baixar (464KB)
4. Fig. 3. a is the change in the average oxygen content in a thermoxide layer with an oxidation temperature of T calculated from energy dispersion analysis data; b is the calculated change in the thickness D of a thermoxide layer with a temperature of T averaged over a micro–section of the surface during 1 hour of oxidation.

Baixar (123KB)
5. Fig. 4. IR spectra of a steel plate oxidized in 1 hour at various temperatures: 1 – 400°C, 2 – 500°C, 3 – 600°C, 4 – 700°C

Baixar (104KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024