Explosive detectors: state of the art
- Авторлар: Buryakov I.A.1, Buryakov T.I.1
-
Мекемелер:
- FSUE “Alexandrov NITI
- Шығарылым: Том 80, № 5 (2025)
- Беттер: 439-458
- Бөлім: REVIEWS
- ##submission.dateSubmitted##: 20.06.2025
- ##submission.dateAccepted##: 20.06.2025
- URL: https://ruspoj.com/0044-4502/article/view/685421
- DOI: https://doi.org/10.31857/S0044450225050013
- EDN: https://elibrary.ru/aswgte
- ID: 685421
Дәйексөз келтіру
Аннотация
The review justifies the list of explosives and their components (E&Cs) to be controlled. Typical objects of detection by instrumental methods of chemical analysis are described – trace amounts of E&Cs on various surfaces or their vapours in the air as indications of the presence of explosive devices or explosive charges. On the basis of these descriptions, requirements for the E&Cs detection equipment to be used are formulated. Analytical and operational characteristics of devices based on standoff laser spectroscopy methods, as well as devices based on sample selection, preparation and analysis by ion mobility spectrometry, colourimetry using reagents for colour reactions, mass spectrometry, high-speed gas chromatography, chromatography-mass spectrometry, high-performance liquid chromatography, sensor methods (optical (chemical), electrical, electrochemical) have been evaluated and compared at the qualitative level. The main directions of development of instrumental analytical technologies for E&Cs detection are listed.
Негізгі сөздер
Толық мәтін

Авторлар туралы
I. Buryakov
FSUE “Alexandrov NITI
Хат алмасуға жауапты Автор.
Email: buryakovia@gmail.com
Ресей, Sosnovy Bor, Leningrad region
T. Buryakov
FSUE “Alexandrov NITI
Email: buryakovti@gmail.com
Ресей, Sosnovy Bor, Leningrad region
Әдебиет тізімі
- Приказ Министерства внутренних дел РФ от 17.11.2015 № 1092 “Об утверждении требований к отдельным объектам инфраструктуры мест проведения официальных спортивных соревнований и техническому оснащению стадионов для обеспечения общественного порядка и общественной безопасности”.
- ASTM E2520-21 Standard practice for measuring and scoring performance of trace explosive chemical detectors / Book of Standards. 2021. V. 15.08. 14 p. https://doi.org/10.1520/E2520-21
- Proximal Detection of Traces of Energetic Materials with an Eye-Safe UV Raman Prototype Developed for Civil Applications. https://www.mdpi.com/sensors/sensors-16-00008/article_deploy/html/images/sensors-16-00008-g001-1024.png (дата обращения 31.03.2021).
- Mostak P., Stancl M. Detection of Semtex plastic explosives / Detection of Explosives and Landmines / Eds. H. Schubert, A. Kuznetsov. Kluwer Academic Publishers, 2002. P. 93.
- Phelan J.M., Webb S.W. Environmental Fate and Transport of Chemical Signatures from Buried Landmines, Technical Report SAND97-1426, Sandia National Laboratories, USA, 1997. 48 p.
- Буряков Т.И., Буряков И.А. Обнаружение следовых количеств пероксидов и нитрата аммония в отпечатках пальца методом спектрометрии ионной подвижности // Журн. аналит. химии. 2024. Т. 79. № 7. С. 772. (Buryakov T.I., Buryakov I.A. Detecting trace amounts of peroxides and ammonium nitrate in fingerprints by ion mobility spectrometry // J. Anal. Chem. 2024. V. 79. № 7. P. 982.)
- Dr. Sauber. https- (дата обращения 31.03.2021).
- Ong T.-H., Mendum T., Geurtsen G., Kelley J., Ostrinskaya A., Kunz R. Use of mass spectrometric vapor analysis to improve canine explosive detection efficiency // Anal. Chem. 2017. V. 89. № 12. P. 6482.
- The Remote Optothermal Sensor (ROSE) Apparatus. https) (дата обращения: 31.03.2021).
- Лидар дистанционного обнаружения взрывчатых веществ. httpsruveshhestv (дата обращения: 31.03.2021).
- The Robot-Mounted Deep UV detector. https://photonsystems.com/wp-content/uploads/2016/11/DSC_3744.jpg (дата обращения: 19.04.2021).
- Crawford C.L., Hill H.H.Jr. Evaluation of false positive responses by mass spectrometry and ion mobility spectrometry for the detection of trace explosives in complex samples // Anal. Chim. Acta. 2013. V. 17. P. 36.
- Capital Investment Plan. FY 2024 – FY 2028. Fiscal Year 2023 Report to Congress, Transportation Security Administration, 2023. P. 45. https://www.tsa.gov/sites/default/files/tsa-capital-investment-plan-fy-2024-2028.pdf (дата обращения 19.10.2023).
- Компактный автоматический обнаружитель взрывчатых и наркотических веществ “КЕРБЕР-СТ-Р”. httpjpg (дата обращения: 18.07.2024).
- IONSCAN 600 – автономный детектор следов ВВ/НВ. httprubig (дата обращения: 18.07.2024).
- “ПОИСК-ХТ” – комплект экспресс-анализа проб на наличие ВВ. https://lavanda-u.ru/katalog/explosive-detector/7-poisk-xt-sprey.html (дата обращения: 18.07.2024).
- Sciex Inc. The real time Detection of trinitrotoluene (TNT) in ambient air using the TAGA system. Application Note No. 377-T, 1977.
- Thomson B.A., Davidson W.R., Lovett A.M. Applications of a versatile technique for trace analysis: Atmospheric pressure negative chemical ionization // Environ. Health Perspect. 1980. V. 36. P. 77.
- Stott W. R., Davidson W.R. Sleeman R. High specificity chemical detection of explosives by tandem mass spectrometry // Proc. SPIE. 1992. V. 1824. P. 68.
- Blakeman K.H., Miller S.E. Development of high-pressure mass spectrometry for handheld and benchtop analyzers / Portable Spectroscopy and Spectrometry 1 / Eds. R.A. Crocombe, P.E. Leary, B.W. Kammrath, H.C. Lee. John Wiley & Sons Ltd, 2021. P. 391.
- Li L., Zhang T., Ge W., He X., Zhang Y., Wang X., Li P. Detection of trace explosives using a novel sample introduction and ionization method // Molecules. 2022. V. 27. Article 4551.
- Li L., Zhang T., Wang D., Zhang Y., He X., Wang X., Li P. Portable digital linear ion trap mass spectrometer based on separate-region corona discharge ionization source for on-site rapid detection of illegal drugs // Molecules. 2022. V. 27. Article 3506.
- Vilkov A., Jorabchi K., Hanold K., Syage J.A. A mass spectrometer based explosives trace detector // Proc. SPIE. 2011. V. 8018. Article 80181G.
- CHEMERA: A New Era in Chemical Detection. https (дата обращения: 15.02.2024).
- TRACER 1000 MS-ETDTM. https (дата обращения: 18.10.2023).
- ASTROTECH REPORTS FISCAL YEAR 2023 FINANCIAL RESULTS. https://www.sec.gov/Archives/edgar/data/1001907/000143774923027021/ex_574301.htm (дата обращения: 23.05.2024).
- st Detect Secures Significant Purchase Order for Additional Checkpoint Security Units. https://www.astrotechcorp.com/2023-11-13-press-release (дата обращения: 23.05.2024).
- Cline J.E., Hobbs J.R., Barrington A.E. Laboratory evaluation of detectors of explosives effluents. Report DOT-TSC-OST-72-27, Department of Transportation, 1972. 60 p.
- Mobile Ultra-Fast GC “Model 4300 zNose”. https://estcal.com/wp-content/uploads/2021/05/4300spec_0.pdf (дата обращения 30.09.2021).
- Collin W.R., Serrano G., Wright L.K., Chang H., Nuñovero N., Zellers E.T. Microfabricated gas chromatograph for rapid, trace-level determinations of gas-phase explosive marker compounds // Anal. Chem. 2014. V. 86. P. 655.
- Buryakov I.A. Express analysis of explosives, chemical warfare agents and drugs with multicapillary column gas chromatography and ion mobility increment spectrometry // J. Chromatog. B. 2004. V. 800. P. 75.
- Буряков И.А., Буряков Т.И. Экспресс-технологии обнаружения взрывчатых веществ. СПб.: ООО “Грейт принт”, 2023. 633 с.
- Хроматографический обнаружитель следов взрывчатых веществ “Шпинат-М1”. http://www.ipgg.sbras.ru/documents/annual-reports/report_ipgg_2007_031-032.pdf (дата обращения 08.11.2021).
- Грузнов В.М., Балдин М.Н., Макась А.Л., Титов Б.Г. Развитие в России методов обнаружения взрывчатых веществ // Журн. аналит. химии. 2011. Т. 66. № 11. С. 1236. (Gruznov V.M., Baldin M.N., Makas’ A.L., Titiv B.G. Progress in methods for the identification of explosives in Russia // J. Anal. Chem. 2011. V. 66. №. 11. P. 1121.)
- Балдин М.Н., Грузнов В.М. Портативный газовый хроматограф с воздухом в качестве газа-носителя для определения следов взрывчатых веществ // Журн. аналит. химии. 2013. Т. 68. № 11. С. 1117. (Baldin M.N., Gruznov V.M. A portable gas chromatograph with air carrier gas for the determination of explosive traces // J. Anal. Chem. 2013. V. 68. № 11. P. 1002.)
- Грузнов В.М., Балдин М.Н., Прямов М.В., Максимов Е.М. Определение концентрации паров взрывчатых веществ с дистанционным автоматизированным отбором проб при контроле объектов // Журн. аналит. химии. 2017. Т. 72. № 11. С. 1000. (Gruznov V.M., Baldin M.N., Pryamov M.V., Maksimov E.M. Determination of explosive vapor concentrations with remote sampling in the control of objects // J. Anal. Chem. 2017. V. 72. № 11. P. 1155.)
- GC-MS “Hapsite ER”. https (дата обращения: 13.05.2021).
- GC-MS “Griffin G510”. https:// (дата обращения: 13.05.2021).
- Torion T-9. httpscbrnetechindex286 (дата обращения: 13.05.2021).
- Физико-химическая лаборатория ЭКЦ УВД по Томской области. https (дата обращения: 13.05.2021).
- Axcend® Presents Next Generation “Green” Compact HPLC. https (дата обращения: 13.05.2021).
- DeTata D., Collins P., McKinley A. A fast liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QToF-MS) method for the identification of organic explosives and propellants // Forensic Sci. Int. 2013. V. 233. P. 63.
- E-3500 detector. https://www.pngkey.com/png/full/514-5141846_scintrex-trace-e3500-explosive-trace-detection-unit-.png (дата обращения 20.05.2021).
- EVD 3000 ++ Hand-held explosives detector. https://autoclear.com/images/Scintrex/EVD3000plusplus.jpg (дата обращения 20.04.2021).
- FLIR Fido XT. https://files1.kyozou.com (дата обращения 15.05.2021).
- Fido X4. httpswww.southernscientific.co.uk/ (дата обращения 15.05.2021).
- Мобильный обнаружитель взрывчатых веществ “Заслон-М”. http://divecon.net/catalog/detektory-vzryvchatykh-veshchestv/mobilnyy-obnaruzhitel-vzryvchatykh-veshchestv-zaslon-m/ (дата обращения 21.05.2021).
- Watson G., Horton W., Staples E. Gas Chromatography utilizing SAW sensors / IEEE 1991 Ultrasonics Symposium, 1991. V. 1. P. 305.
- Guerra-Diaz P., Gura S., Almirall J.R. Dynamic planar solid phase microextraction-ion mobility spectrometry for rapid field air sampling and analysis of illicit drugs and explosives // Anal. Chem. 2010. V. 82. № 7. P. 2826.
- Pinnaduwage L.A., Gehl A., Hedden D.L., Muralidharan G., Thundat T., Lareau R.T. et al. A microsensor for trinitrotoluene vapour // Nature. 2003. V. 425. P. 474.
- Sabo M., Malásková M., Matejčík Š. Ion mobility spectrometry-mass spectrometry studies of ion processes in air at atmospheric pressure and their application to thermal desorption of 2,4,6-trinitrotoluene // Plasma Sources Sci. Technol. 2014. V. 23. Article 015025.
- Буряков Т.И., Буряков И.А. Обнаружение следовых количеств взрывчатых веществ в присутствии молочной кислоты методом спектрометрии ионной подвижности // Журн. аналит. химии. 2022. Т. 77. № 1. С. 28. (Buryakov T.I., Buryakov I.A. Detection of trace amounts of explosives in the presence of lactic acid by ion mobility spectrometry // J. Anal. Chem. 2022. V. 77. № 1. P. 43.)
- Fierro-Mercado P.M., Hernández-Rivera S.P. Highly sensitive filter paper substrate for SERS trace explosives detection // Int. J. Spectrosc. 2012. V. 2012. Article 716527.
- Senesac L.R., Yi D., Greve A., Hales J.H., Davis Z.J., Nicholson D.M. et al. Micro-differential thermal analysis detection of adsorbed explosive molecules using microfabricated bridges // Rev. Sci. Instrum. 2009. V. 80. Article 035102.
- Papantonakis M.R., Kendziora C., Furstenberg R., Rake M., Stepnowski J., McGill R.A. Stand-off detection of trace explosives by infrared photothermal imaging // Proc. SPIE. 2009. V. 7304. Article 730418.
- Fetterolf D.D. Antibody-based field test kits for explosives / Advances in Analysis and Detection of Explosives / Ed. J. Yinon. Dordrecht, Holland: Kluwer Academic Publishers, 1993. P. 19.
- Collin O.L., Niegel C., DeRhodes K., McCord B.R., Jackson G.P. Fast gas chromatography of explosive compounds using a pulsed-discharge electron capture detector // J. Forensic Sci. 2006. V. 51. P. 815.
- Joshi-Kumar M. Headspace analysis of smokeless powders: development of mass calibration methods using microdrop printing for chromatographic and ion mobility spectrometric detection. Diss. … PhD. Miami: Florida International University, 2010. 208 p.
- Vapor Tracer 2 Handheld explosives and narcotics detector Technical Data Sheet – DH/2K-085. 2015. VAPORTRACER2®. https://dsadetection.com/products/etd-consumables/vaportracer.html (дата обращения: 09.11.2021).
- Wang C., Huang H., Bunes B.R., Wu N., Xu M., Yang X. et al. Trace detection of RDX, HMX and PETN explosives using a fluorescence spot sensor // Sci. Rep. 2016. V. 6. Article 25025.
- Zalewska A., Pawłowski W., Tomaszewski W. Limits of detection of explosives as determined with IMS and field asymmetric IMS vapour detectors // Forensic Sci. Int. 2013. V. 226. P. 168.
- Dogariu A. Standoff detection and imaging of explosives using CARS / Proc. Conf. on Laser and Electro-Optics. 2013. Article AF2H.2.
- Lloyd J.B.F., King R.M. Detection and persistence of trace of SEMTEX and some other explosives on skin surfaces / Proc. Third Symp. on Analysis and Detection of Explosives. Karlsruhe, Germany: Fraunhofer-Institut für Chemische Technologie, 1989. Article 9.
- Gresham G.L., Davies J.P., Goodrich L.D., Blackwood L.G., Liu B.Y.H. Thimsem D. et al. Development of particle standards for testing detection systems: Mass of RDX and particle size distribution of composition 4 residues // Proc. SPIE. 1994. V. 2276. P. 34.
- Ong T., Mendum T., Geurtsen G., Kelley J., Ostrinskaya A., Kunz R. Use of mass spectrometric vapor analysis to improve canine explosive detection efficiency // Anal. Chem. 2017. V. 89. № 12. P. 6482.
- Nacson S., Mitchner B., Legrady O., Siu T., Nargolwalla S. A GC/ECD approach for the detection of explosives and taggants / Proc. First Int. Symp. on Explosive Detection Technology (Atlantic Сity, November 13–15, 1991) / Ed. Khan S.M. Atlantic City, USA, 1992. P. 714.
- Буряков И.А., Коломиец Ю.Н., Луппу В.Б. Обнаружение паров взрывчатых веществ в воздухе с помощью спектрометра нелинейности дрейфа ионов // Журн. аналит. химии. 2001. Т. 56. № 4. С. 381. (Buryakov I.A., Kolomiets Yu.N., Luppu B.V. Detection of explosive vapors in the air using an ion drift nonlinearity spectrometer // J. Anal. Chem. 2001. V. 56. № 4. P. 336.)
- Nacson S., Legrady O., Siu T., Greenberg D., Nargolwalla S., Geblewicz P. Improved and novel approaches for the detection of explosives // Proc. SPIE. 1994. V. 2276. P. 69.
- Robinson J.A., Perkins F.K., Snow E.S., Wei Z., Sheehan P.E. Reduced graphene oxide molecular sensors // Nano Lett. 2008. V. 8. № 10. P. 3137.
- Phelan J.M., Barnett J.L., Fisher M., Holland R. Characterization of scrap materials for mass detonating energetic materials / Final Report. Project CP 1194. Albuquerque, USA: Sandia National Laboratories, February, 2002. 38 p.
- Pinnaduwage L.A., Thundat T., Hawk J.E., Hedden D.L., Britt P.F., Houser E.J. et al. Detection of 2,4-dinitrotoluene using microcantilever sensors // Sens. Actuators B. 2004. V. 99. № 2-3. P. 223.
- Pella P.A. Generator for producing trace vapor concentrations of 2,4,6-trinitrotoluene, 2,4-dinitrotoluene, and ethylene glycol dinitrate for calibrating explosives vapor detectors // Anal. Chem. 1976. V. 48. № 11. P. 1632.
- George V., Jenkins T.F., Leggett D.C., Cragin J.H., Phelan J., Oxley J.C., Penningtone J.C. Progress on determining the vapor signature of a buried landmine // Proc. SPIE. 1999. V. 3710. P. 258.
- Jarke F.H., Gordon S.M. Explosives vapor characterization / Final Report DOT/FAA/CT-82/65. Washington, DC, USA: Federal aviation administration, February, 1982. 458 p.
- Martinez-Lozano P., Rus J., Fernández de la Mora G., Hernández M., Fernández de la Mora J. Secondary electrospray ionization (SESI) of ambient vapors for explosive detection at concentrations below parts per trillion // J. Am. Soc. Mass Spectrom. 2009. V. 20. P. 287.
- Ионно-дрейфовый детектор “Кербер-Т”. http://www.analizator.ru/production/ims/kerber-t/ (дата обращения 23.06.2020).
- Портативный детектор паров взрывчатых веществ “Пилот-М”. Техническое описание. http://www.lavanda-u.ru/katalog/explosive-detector/10-pilot-m1-premium.html (дата обращения 23.06.2020).
- Li P., Li X., Zuo G., Liu J., Wang Y., Liu M., Jin D. Silicon dioxide microcantilever with piezoresistive element integrated for portable ultraresoluble gaseous detection // Appl. Phys. Lett. 2006. V. 89. № 7. Article 074104.
- Бобровников С.М., Горлов Е.В., Жарков В.И., Панченко Ю.Н. Оценка пороговой чувствительности лидарной системы для обнаружения паров нитросоединений // Известия вузов. 2013. Т. 56. № 8/3. С. 275.
- Bobrovnikov S.M., Gorlov E.V., Zharkov V.I., Panchenko Yu.N., Puchikin A.V., Aksenov V.A. et al. LIDAR detector of explosive vapors // Proc. SPIE. 2016. V. 10035. Article 1003554.
- Zhang Y., Xu M., Bunes B.R., Wu N., Gross D.E., Moore J.S., Zang L. Oligomer-coated carbon nanotube chemiresistive sensors for selective detection of nitroaromatic explosives // Appl. Mater. Interfaces. 2015. V. 7. № 14. P. 7471.
- Harvey S.D. Selective solid-phase microextraction of explosives using fibers coated with the La(III) complex of p-di(4,4,5,5,6,6,6-heptafluoro-1,3-hexanedionyl)benzene // J. Chromatogr. A. 2008. V. 1213. P. 110.
- Shaik A.K., Epuru N.R., Syed H., Byram C., Soma V.R. Femtosecond laser induced breakdown spectroscopy based standoff detection of explosives and discrimination using principal component analysis // Opt. Express. 2018. V. 26. № 7. P. 8069.
- Shaik A.K., Soma V.R. Standoff discrimination and trace detection of explosive molecules using femtosecond filament induced breakdown spectroscopy combined with silver nanoparticles // OSA Continuum. 2019. V. 2. № 3. P.554.
- El-Sharkawy Y.H., Elbasuney S. Novel laser induced photoacoustic spectroscopy for instantaneous trace detection of explosive materials // Forensic Sci. Int. 2017. V. 277. P. 215.
- Bi L., Habib A., Chen L., Xu T., Wen L. Ultra-trace level detection of nonvolatile compounds studied by ultrasonic cutter blade coupled with dielectric barrier discharge ionization-mass spectrometry // Talanta. 2021. V. 222. Article 121673.
- Szyposzyńska M., Spławska A., Ceremuga M., Kot P., Maziejuk M. Stationary explosive trace detection system using differential ion mobility spectrometry (DMS) // Sensors. 2023. V. 23. Article 8586.
- Schaefer C., Lippmann M., Beukers M., Beijer N., van de Kamp B., Knotter J., Zimmermann S. Detection of triacetone triperoxide by high kinetic energy ion mobility spectrometry // Anal. Chem. 2023. V. 95. № 46. P. 17099.
- Snyder D.T., Pulliam C.J., Ouyang Z., Cooks R.G. Miniature and fieldable mass spectrometers: Recent advances // Anal. Chem. 2016. V. 88. P. 2.
- Zhang X., Zhang H., Yu K., Liu Y., He J., Jiang J. Miniaturization of cylindrical ion trap mass analyzers // Int. J. Mass Spectrom. 2020. V. 455. Article 116376.
- Hashimoto Y. Development of a miniature mass spectrometer and an automated detector for sampling explosive materials // Mass Spectrom. (Tokyo). 2017. V. 6. Article A0054.
- Hug W.F., Reid M., Nguyen Q., Bhartia R., Reid R.D. A new, hand-held, 1 to 5 m standoff analyzer for real-time detection of trace chemical, biological, and explosives substances on surfaces // Proc. SPIE. 2019. V. 11010. Article 110100L.
- Randolph G. Robotic Deep UV Standoff Sensors. 2016. URL: https://photonsystems.com/robotic-deep-uv-standoff-sensors (дата обращения 13.11.2024).
- Moros J., Lorenzo J.A., Laserna J.J. Standoff detection of explosives: Critical comparison for ensuing options on Raman spectroscopy-LIBS sensor fusion // Anal. Bioanal. Chem. 2011. V. 400. № 10. P. 3353.
- Ünsal S.M., Erkan E. Development and validation of a new RP-HPLC method for organic explosive compounds // Turk. J. Chem. 2022. V. 46. P. 923.
- Eldrid C., Thalassinos K. Developments in tandem ion mobility mass spectrometry // Biochem. Soc. Trans. 2020. V. 48. P. 2457.
- Hagan N., Goldberg I., Graichen A., Jean A.St., Wu C., Lawrence D., Demirev P. Ion mobility spectrometry – High resolution LTQ-orbitrap mass spectrometry for analysis of homemade explosives // J. Am. Soc. Mass Spectrom. 2017. V. 28. P. 1531.
- Costa C., van Es E.M., Sears P., Bunch J., Palitsin V., Cooper H., Bailey M.J. Exploring a route to a selective and sensitive portable system for explosive detection – Swab spray ionization coupled to of high-field assisted waveform ion mobility spectrometry (FAIMS) // Forensic Sci. Int.: Synergy. 2019. V. 1. P. 214.
- Velu K., Shrestha R.G., Shrestha L.K., Ariga K. Recent advancements in novel sensing systems through nanoarchitectonics // Biosensors. 2023. V. 13. № 2. P. 286.
- Ehlert S., Walte A., Zimmermann R. Ambient pressure laser-desorption and laser induced acoustic desorption ion-mobility-spectrometry detection of explosives // Anal. Chem. 2013. V. 85. № 22. P. 11047.
- Rousier R., Bouat S., Bordy T., Grateau H., Darboux M., Hue J. et al. T-REX: A portable device to detect and identify explosives vapors // Procedia Eng. 2012. V. 47. P. 390.
- Blue R., Uttamchandani D., Thomson N., Skabara P. Novel polymer materials for low-cost nitro vapor detection sensors// IEEE Sens. J. 2015. P. 1.
- Lee Y.H., Liu H., Lee J.Y., Kim S.H., Kim S.K., Sessler J.L. et al. Dipyrenylcalix[4]arene – A fluorescence-based chemosensor for trinitroaromatic explosives // Chem. Eur. J. 2010. V. 16. P. 5895.
- Cui H., Liu W., Xu X., Zhou J., Song X., Chen X. Synthesis and fluorescence sensing for nitro explosives and pesticides of two Cd-coordination polymers // ACS Omega. 2023. V. 8. P. 39917.
- Dhinakaran Y., Shree M.V., Sai M.S. Advancement in Nanocomposites for Explosive Sensing / Eds. M. Singh, V.K. Rai, A, Rai. Bentham books, 2022. P. 148.
- Grzebyk T., Szyszka P., Krysztof M., Górecka-Drzazga A., Dziuban J. MEMS ion source for ion mobility spectrometry // J. Vac. Sci. Technol. B. 2019. V. 37. № 2. Article 022201.
- Radauscher E.J., Keil A.D., Wells M., Amsden J.J., Piascik J.R., Parker C.B. et al. Chemical ionization mass spectrometry using carbon nanotube field emission electron sources // J. Am. Soc. Mass Spectrom. 2015. V. 26. № 11. P. 1903.
- Li Z. Nanoporous silica-dye microspheres for enhanced colorimetric detection of cyclohexanone // Chemosensors. 2018. V. 6. Article 34.
- Wright L.K., Zellers E.T. A nanoparticle-coated chemiresistor array as a microscale gas chromatograph detector for explosive marker compounds: Flow rate and temperature effects // Analyst. 2013. V. 138. P. 6860.
- Ma R., Ota S., Li Y., Yang S., Zhang X. Explosives detection in a lasing plasmon nanocavity // Nat. Nanotechnol. 2014. V. 9. P. 600.
- Aznar-Gadea E., Rodriguez-Canto P.J., Martínez-Pastor J.P., Lopatynskyi A., Chegel V., Abargues R. Molecularly imprinted silver nanocomposites for explosive taggant sensing // ACS Appl. Polym. Mater. 2021. V. 3. P. 2960.
- Lang H.P., Hegner M., Gerber C. Nanomechanical Cantilever Array Sensors / Ed. Bhushan B. Springer-Verlag, 2017. P. 457.
- Lichtenstein A., Havivi E., Shacham R., Hahamy E., Leibovich R., Pevzner A. et al. Supersensitive fingerprinting of explosives by chemically modified nanosensors arrays // Nat. Commun. 2014. V. 5. Article 4195.
- Marchisio A., Tulliani J. Semiconducting metal oxides nanocomposites for enhanced detection of explosive vapors // Ceramics. 2018. V. 1. P. 98.
- Chae M., Kim J., Yoo Y.K., Kang J.Y., Lee J.H., Hwang K.S. A micro-preconcentrator combined olfactory sensing system with a micromechanical cantilever sensor for detecting 2,4-dinitrotoluene gas vapor // Sensors. 2015. V. 15. P. 18167.
- Masoumi S., Hajghassem H., Erfanian A., Rad A.M. Design and manufacture of TNT explosives detector sensors based on GFET // Sens. Rev. 2018. V. 38. № 2. P. 181.
- Chakravarty S., Bhardwaj N., Mandal B.B., Sarma N.S. Silk fibroin-carbon nanoparticle composite scaffolds: A cost effective supramolecular ‘turn off’ chemiresistor for nitroaromatic explosive vapours // J. Mater. Chem. C. 2016. V. 4. P. 8920.
- Lee K., Yoo Y.K., Chae M., Hwang K.S., Lee J., Kim H. et al. Highly selective reduced graphene oxide (rGO) sensor based on a peptide aptamer receptor for detecting explosives // Sci. Rep. 2019. V. 19. Article 10297.
- Grzebyk T., Szmajda T., Szyszka P., Gorecka-Drzazga A., Dziuban J. Glow-discharge ion source for MEMS mass spectrometer // Vacuum. 2020. V. 171. Article 109008.
- Zrodnikov Y., Rajapakse M.Y., Peirano D.J., Aksenov A.A., Kenyon N.J., Davis C.E. High asymmetric longitudinal field ion mobility spectrometry device for low power mobile chemical separation and detection // Anal. Chem. 2019. V. 91. P. 5523.
- Smith B.L., Boisdon C., Young I.S., Praneenararat T., Vilaivan T., Maher S. Flexible drift tube for high resolution ion mobility spectrometry (Flex-DT-IMS) // Anal. Chem. 2020. V. 92. № 13. P. 9104.
- Lucklum F., Janssen S., Lang W., Vellekoop M.J. Miniature 3D gas chromatography columns with integrated fluidic connectors using high-resolution stereolithography fabrication // Procedia Eng. 2015. V. 120. P. 703.
- Cheng Y., Liu Y., Hu J., Li S., Shao L., Wu Z., Chen C. Recent advances in MEMS mass spectrometers // Chinese J. Anal. Chem. 2022. V. 50. № 1. P. 60.
- Koudehi M.F., Pourmortazavi S.M., Zibaseresht R., Mirsadeghi S. MEMS-Based PVA/PPy/MIP polymeric-nanofiber sensor fabricated by LIFT-OFF process for detection 2,4-dinitrotoluene vapor // IEEE Sens. J. 2021. V. 21. № 7. P. 9492.
- Pang W., Zhao H., Kim E.S., Zhang H., Yu H., Hu X. Piezoelectric microelectromechanical resonant sensors for chemical and biological detection // Lab Chip (Critical Review). 2012. V. 12. №1. P. 29.
- Lee D., Kim S., Jeon S., Thundat T. Direct detection and speciation of trace explosives using a nanoporous multifunctional microcantilever // Anal. Chem. 2014. V. 86. P. 5077.
- Li S., Zou R., Chen K.P., Huang X., Liu L., Lu Y. Development of compact laser systems using 3D printing techniques for stand-off laser spectroscopy / The Int. Photonics and Optoelectronics Meeting 2017. OSA Technical Digest, 2017. Article ASu3A.1.
- Brown H.M., McDaniel T.J., West C.P., Bondzie E.H., Aldeman M.R., Molnar B.T. et al. Characterization and optimization of a rapid, automated 3D-printed cone spray ionization-mass spectrometry (3D-PCSI-MS) methodology // Int. J. Mass Spectrom. 2022. V. 474. Article 116781.
- Szyszka P., Jendryka J., Białas M., Grzebyk T. Towards 3D printed compact Quadrupole mass spectrometer with MEMS components / Proc. IEEE 20th Int. Conf. on Micro- and Nanotechnology for Power Generation and Energy Conversion Applications. 2021. P. 144.
- Eckhoff C.C., Lubinsky N.K., Metzler L.J., Pedder R.E., Velásquez-García L.F. Low-cost, compact quadrupole mass filters with unity mass resolution via ceramic resin vat photopolymerization // Adv. Sci. 2023. V. 11. № 9. Article 2307665.
- Steen H., Dobrokhotov V., Lineberry Q., Paschal J. 3-D glass printable hand-held gas chromatograph for biomedical and environmental application. Patent US № 11243192. Filed 15.03.2021. Pub. 08.02.2022.
- Xu Y., Wu X., Guo X., Kong B., Zhang M., Qian X. et al. The boom in 3D-printed sensor technology // Sensors. 2017. V. 17. Article 1166.
- Зырянов Г.В., Копчук Д.С., Ковалев И.С., Носова Э.В., Русинов В.Л., Чупахин О.Н. Хемосенсоры для обнаружения нироароматических (взрывчатых) веществ // Успехи химии. 2014. Т. 83. № 9. С. 783. (Zyryanov G.V., Kopchuk D.S., Rusinov V.L., Chupakhin O.N., Kovalev I.S., Nosova E.V. Chemosensors for detection of nitroaromatic compounds (explosives) // Rus. Chem. Rev. 2014. T. 83. № 9. P. 783.)
- Postler J., Goulart M.M., Matias C., Mauracher A., Ferreira da Silva F., Scheier P. et al. Dissociative electron attachment to the nitroamine HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) // J. Am. Soc. Mass Spectrom. 2013. V. 24. № 5. P. 744.
- Lai R., Dodds E.D., Li H. Molecular dynamics simulation of ion mobility in gases // J. Chem. Phys. 2018. V. 148. Article 064109.
- Koopman J., Grimme S. Calculation of mass spectra with the QCxMS method for negatively and multiply charged molecules // J. Am. Soc. Mass Spectrom. 2022. V. 33. № 12. P. 2226.
Қосымша файлдар
