Influence of non-ionogenic pav on the intensity of metal lines in drop-spark discharge spectra
- Autores: Zhirkov А.A.1, Yagov V.V.1
-
Afiliações:
- Vernadsky Institute of Geochemistry and Analytical Chemistry, RAS
- Edição: Volume 80, Nº 5 (2025)
- Páginas: 473-478
- Seção: ORIGINAL ARTICLES
- ##submission.dateSubmitted##: 20.06.2025
- ##submission.dateAccepted##: 20.06.2025
- URL: https://ruspoj.com/0044-4502/article/view/685427
- DOI: https://doi.org/10.31857/S0044450225050036
- EDN: https://elibrary.ru/atduxo
- ID: 685427
Citar
Resumo
Multiple amplification of metal lines in the emission spectrum of drop-spark discharge was found when non-ionogenic surfactants are introduced into the sample. The effect occurs at the content of Triton X-100 more than 1 % and persists up to 35 wt.% The degree of enhancement depends on the concentration of the background electrolyte, reaching two orders of magnitude for highly dilute acids (e.g., 10 mM HCl). In the presence of 1.5 wt.% Triton X-100, an order of magnitude decrease in the detection limits of Cu, Cs, Mg, Li and Pb is observed.
Texto integral

Sobre autores
А. Zhirkov
Vernadsky Institute of Geochemistry and Analytical Chemistry, RAS
Autor responsável pela correspondência
Email: vdomah@gmail.com
Rússia, Moscow
V. Yagov
Vernadsky Institute of Geochemistry and Analytical Chemistry, RAS
Email: vdomah@gmail.com
Rússia, Moscow
Bibliografia
- Pohl P., Jamroz P., Swiderski K., Dzimitrowicz A., Lesniewicz A. Critical evaluation of recent achievements in low power glow discharge generated at atmospheric pressure between a flowing liquid cathode and a metallic anode for element analysis by optical emission spectrometry // Trends Anal. Chem. 2017. V. 88. P. 119.
- Gręda K., Jamróz P., Pohl P. The improvement of the analytical performance of direct current atmospheric pressure glow discharge generated in contact with the small-sized liquid cathode after the addition of non-ionic surfactants to electrolyte solutions // Talanta. 2013. V. 108. P. 74.
- Zhang Y., Liu J., Mao X., Chen G., Tian D. Review of miniaturized and portable optical emission spectrometry based on microplasma for elemental analysis // Trends Anal. Chem. 2021. V. 144. Article 116437.
- Yu J., Yin L., Lu Q., Feng F., Kang Y., Luo H. Highly sensitive determination of mercury by improved liquid cathode glow discharge with the addition of chemical modifiers // Anal. Chim. Acta. 2020. V. 1131. P. 25.
- Yu J., Kang Y., Lu Q., Luo H., Lu Z., Cui L., Li J. Improvement of analytical performance of liquid cathode glow discharge for the determination of bismuth using formic acid as a matrix modifier // Microchem. J. 2020. V. 159. Article 105507.
- Swiderski K., Dzimitrowicz A., Jamroz P., Pohl P. Influence of pH and low-molecular weight organic compounds in solution on selected spectroscopic and analytical parameters of flowing liquid anode atmospheric pressure glow discharge (FLA-APGD) for the optical emission spectrometric (OES) determination of Ag, Cd, and Pb // J. Anal. Atom. Spectrom. 2018. V. 33. № 3. P. 437.
- Doroski T.A., Webb M.R. Signal enhancement in solution-cathode glow discharge – Optical emission spectrometry via low molecular weight organic compounds // Spectrochim. Acta B. 2013. V. 88. P. 40.
- Zhang Z., Wang Z., Li Q., Zou H., Shi Y. Determination of trace heavy metals in environmental and biological samples by solution cathode glow discharge-atomic emission spectrometry and addition of ionic surfactants for improved sensitivity // Talanta. 2014. V. 119. P. 613.
- Shekhar R., Madhavi K., Meeravali N.N., Kumar S.J. Determination of thallium at trace levels by electrolyte cathode discharge atomic emission spectrometry with improved sensitivity // Anal. Methods. 2014. V. 6. № 3. P. 732.
- Lu Q., Yang S., Sun D., Zheng J., Li Y., Yu J., Su M. Direct determination of Cu by liquid cathode glow discharge-atomic emission spectrometry // Spectrochim. Acta B. 2016. V. 125. P. 136.
- Lu Q., Feng Y., Luo H., Yu J., Kang Y. Enhanced sensitivity for the determination of lithium by miniaturized liquid cathode glow discharge (LCGD) atomic emission spectrometry (AES) with the addition of surfactants // Anal. Lett. 2022. V. 55. № 17. P. 2789.
- Greda K., Jamroz P., Pohl P. Effect of the addition of non-ionic surfactants on the emission characteristic of direct current atmospheric pressure glow discharge generated in contact with a flowing liquid cathode // J. Anal. Atom. Spectrom. 2013. V. 28. № 1. P. 134.
- Yagov V.V., Korotkov A.S., Zuev B.K., Myasoedov B.F. Drop-spark discharge: An atomization and excitation source for atomic emission sensors // Mendeleev Commun. 1998. V. 8. № 4. P. 161.
- Yagov VV., Korotkov A.S., Zhirkov A.A., Zuev B.K. Pulsed atomization and excitation sources with solution electrodes for optical emission spectroscopy / Advances in Geochemistry, Analytical Chemistry, and Planetary Sciences. Cham: Springer International Publishing, 2023. P. 517.
- Ягов В.В., Коротков А.С., Жирков А.А., Погонин В.И., Зуев Б.К. Портативный атомно-эмиссионный спектрометр для анализа растворов на основе капельно-искрового разряда // Журн. аналит. химии. 2019. Т. 74. № 3. С. 234. (Yagov V.V., Korotkov A.S., Zhirkov A.A., Pogonin V.I., Zuev B.K. A portable atomic emission spectrometer based on drop-spark discharge for analyzing solutions // J. Anal. Chem. 2019. V. 74. №3. P. 270.)
- Ягов В.В., Жирков А.А., Мальченкова А.А. Влияние органических добавок на интенсивность линий металлов в эмиссионном спектре капельно-искрового разряда при вводе пробы в электролитный анод // Журн. аналит. химии. 2023. Т. 78. № 8. С. 703. (Yagov V.V., Zhirkov A.A., Mal’chenkova A.A. Effect of organic additives on the intensity of metal lines in the emission spectrum of a drop-spark discharge upon sample introduction into an electrolyte anode // J. Anal. Chem. 2023. V. 78. P. 995.)
- Ягов В.В., Жирков А.А. Аналитические возможности капельно-искрового спектрометра при вводе пробы в электролитный анод // Журн. аналит. химии. 2022. Т. 77. № 5. С. 427. (Yagov V.V., Zhirkov A.A. Analytical capabilities of a drop-spark spectrometer in sample introduction into an electrolyte anode // J. Anal. Chem. 2022. V. 77. P. 550.)
- Жирков А.А., Ягов В.В., Власова А.А., Зуев Б.К. Микроплазменный анализатор для определения щелочных и щелочноземельных металлов в малых объемах проб сложного фазового состава // Журн. аналит. химии. 2015. Т. 70. № 12. С. 1276. (Zhirkov A.A., Yagov V.V., Vlasova A.A., Zuev B.K. A microplasma analyzer for the determination of alkali and alkali-earth metals in small volumes of samples of complex phase composition // J. Anal. Chem. 2015. V. 70. № 12. P. 1468.)
- Zhang Y., Orejas J., Fandiño J., Blanco Fernández D., Pisonero J., Bordel N. Critical evaluation of SCGD-OES analytical performance in the presence of NaCl // J. Anal. Atom. Spectrom. 2022. V. 37. № 5. P. 1150.
- Ягов В.В., Гецина М.Л. Влияние состава фонового электролита на интенсивность линий металлов в электрических разрядах с жидким электролитным катодом // Журн. аналит. химии. 2004. Т. 59. № 1. С. 73. (Yagov V.V., Gentsina M.L. Effect of supporting electrolyte composition on the intensity of metal lines in electrolyte-cathode discharge spectra // J. Anal. Chem. 2004. V. 59. №1. P. 64.)
- Павлов П.А. Динамика вскипания сильно перегретых жидкостей. Свердловск: УрО АН СССР, 1988. 243 с.
- Sanz-Medel A., Del M., Fernandez De La Campa R., Blanco Gonzalez E., Fernandez-Sanchez M.L. Organised surfactant assemblies in analytical atomic spectrometry // Spectrochim. Acta B. 1999. V. 54. Article 251287.
Arquivos suplementares
