Terahertz Time-Domain Spectroscopy (THz-TDS) of LED Heterostructures with Three and Five InxGa1 – xN/GaN Quantum Wells
- Autores: Burmistrov E.R1, Avakyants L.P1
- 
							Afiliações: 
							- Moscow State University
 
- Edição: Volume 163, Nº 5 (2023)
- Páginas: 669-681
- Seção: Articles
- URL: https://ruspoj.com/0044-4510/article/view/653516
- DOI: https://doi.org/10.31857/S0044451023050061
- EDN: https://elibrary.ru/BDSFKN
- ID: 653516
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
Using terahertz time-domain spectroscopy (THz-TDS), we have detected resonance frequencies of plasmon oscillations excited in heterostructures with multiple InxGa1 – xN/GaN quantum wells by laser pulses with a duration of 130 fs in the temperature range from 90 to 170 K. The fast Fourier transform of temporal forms of terahertz pulses has made it possible to obtain frequency spectra of the power and of the phase shift of terahertz radiation, the interpretation of which has allowed us to estimate the quasi-momentum relaxation time (τ = 10–12 s), mobility (μ = 4 × 103 cm2/(V s)), and effective mass (m* = 0.45m) of majority charge carriers in these heterostructures. Based on the frequency spectra of power and phase shift of terahertz radiation, we have obtained the temperature dependences of the effective mass and relaxation time of the quasi-momentum of a 2D electron gas (2DEG). The 2DEG mobility value obtained by the THz-TDS method is in good agreement with the Hall measurement data.
Sobre autores
E. Burmistrov
Moscow State University
														Email: eugeni.conovaloff@yandex.ru
				                					                																			                												                								119234, Moscow, Russia						
L. Avakyants
Moscow State University
							Autor responsável pela correspondência
							Email: avakyants@physics.msu.ru
				                					                																			                												                								119234, Moscow, Russia						
Bibliografia
- B. Richard and M. Schasfoort, Handbook of Surface Plasmon Resonance, (2017).
- A. Ando, T. Kurose, V. Reymond, K. Kitano, H. Kitahara, K. Takano, M. Tani, M. Hangyo, and S. Hamaguchi, J. Appl. Phys. 110, 7 (2011).
- S. P. Jamison, D. R. Jones, R. C. Issac, B. Ersfeld, D. Clark, and D. A. Jaroszynski, J. Appl. Phys. 93, 7 (2003).
- C. Strothk¨amper, A. Bartelt, R. Eichberger, C. Kaufmann, and T. Unold, Phys. Rev. B 89, 11 (2014).
- A. Mendoza-Galvan and J. Gonzalez-Hernandez, J. Appl. Phys. 87, 760 (2000).
- M. Orio and D. Pantazis, F. Neese, Photosynthesis Research 102, 2 (2009).
- G. Sun, R. Chen, and Y. J. Ding, IEEE J. Sel. Top. Quantum Electron, 19 (2013).
- I. Prudaev, S. Sarkisov, O. Tolbanov, and A. Kosobutsky, Phys. Stat. Sol. B 252, 5 (2015).
- W. Rehman, R. L. Milot, G. E. Eperon, C. Wehrenfennig, J. L. Boland, H. J. Snaith, M. B. Johnston, and L. M. Herz, Adv. Mat. 27, 48 (2015).
- G. R. Yettapu, D. Talukdar, S. Sarkar, A. Swarnkar, A. Nag, P. Ghosh, and P. Mandal, Nano Lett. 16, 8 (2016).
- A. M. Ulatowski, L. M. Herz, and M. B. Johnston, J/ of Infrared, Millimeter, and Terahertz Waves 41, 12 (2020).
- D. Pashnev, V. V. Korotyeyev, J. Jorudas, T. Kaplas, V. Janonis, A. Urbanowicz, and I. Kaˇsalynas, Appl. Phys. Lett. 117, 16 (2020).
- K. H. Tsai, T.-M. Wu, and S. F. Tsay, J. Chem. Phys. 132, 034502 (2010).
- V. V. Korotyeyev, V. A. Kochelap, V. V. Kaliuzhnyi, and A. E. Belyaev, Appl. Phys. Lett. 120, 252103 (2022).
- P. J. S. van Capel, D. Turchinovich, H. P. Porte, S. Lahmann, U. Rossow, A. Hangleiter, and J. I. Dijkhuis, Phys. Rev. B 84, (2011).
- G. Sun, G. Xu, and Y. J. Ding, IEEE J. Sel. Top. Quantum Electron. 17, 48 (2011).
- H. P. Porte, D. Turchinovich, D. G. Cooke, and P. U. Jepsen, J. Phys.: Conf. Series 193, 012084 (2009).
- М. Л. Бадгутдинов, А. Э. Юнович, ФТП 42, 4 (2008).
- В. И. Олешко, С. Г. Горина, Ученые записки физического факультета 5, 155501 (2015).
- В. Г. Мокеров, А. Л. Кузнецов, Ю. В. Федоров, Е. Н. Енюшкина, А. С. Бугаев, А. Ю. Павлов, Д. Л. Гнатюк, А. В. Зуев, Р. Р. Галиев, Е. Н. Овчаренко, Ю. Н. Свешников, А. Ф. Цацульников, В. М. Устинов, ФТП 43, 4 (2009).
- J. M. Hensley, J. Montoya, M. G. Allen, J. Xu, L. Mahler, A. Tredicucci, H. E. Beere, and D. A. Ritchie, Optics Express 22, 17 (2009).
- G. Franssen, P. Perlin, and T. Suski, Phys. Rev. B 69, 4 (2004).
- Z. Chang, Phys. Rev. A 70, 4 (2004).
- P. Schley, R. Goldhahn, G. Gobsch, M. Feneberg, K. Thonke, and X. Wang, A. Yoshikawa, Phys. Stat. Sol. B 246, 6 (2009).
- S. J. Allen, D. C. Tsui, and R. A. Logan, Phys. Rev. Lett. 38, 980 (1977).
- G. Dresselhaus, A. F. Kip, and C. Kittel, Phys. Rev. 98, 2 (1955).
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 
