FIELD GENERALIZATION OF ELLIPTIC CALOGERO – MOSER SYSTEM IN THE FORM OF HIGHER RANK LANDAU – LIFSHITZ MODEL

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

We prove gauge equivalence between integrable field generalization of the elliptic Calogero–Moser model and the higher rank XYZ Landau–Lifshitz model of vector type on 1+1 dimensional space-time. Explicit formulae for the change of variables are derived, thus providing the Poisson map between these models.

作者简介

K. Atalikov

NRC «Kurchatov Institute»; Steklov Mathematical Institute of Russian Academy of Sciences

编辑信件的主要联系方式.
Email: kantemir.atalikov@yandex.ru
Moscow, Russia; Moscow, Russia

A. Zotov

Steklov Mathematical Institute of Russian Academy of Sciences

Email: zotov@mi-ras.ru
Moscow, Russia

参考

  1. L. D. Landau and E. M. Lifshitz, Phys. Zs. Sowjet. 8, 153 (1935).
  2. E. K. Sklyanin, Preprint LOMI E-3-79, Leningrad (1979).
  3. E. K. Sklyanin, Questions of Quantum Field Theory and Statistical Physics, Part 6, Zap. Nauchn. Sem. LOMI 150, 154 (1986).
  4. L. D. Faddeev and L. A. Takhtajan, Hamiltonian Methods in the Theory of Solitons, Springer-Verlag, Berlin (1987).
  5. V. E. Zakharov and A. B. Shabat, Sov. Phys. JETP 34, 62 (1972).
  6. V. E. Zakharov and A. B. Shabat, Funct. Anal. Appl. 8, 226 (1974).
  7. V. E. Zakharov and A. B. Shabat, Funct. Anal. Appl. 13, 166 (1979).
  8. I. Krichever, Commun. Math. Phys. 229, 229 (2002); arXiv:hep-th/0108110.
  9. A. Levin, M. Olshanetsky, and A. Zotov, Commun. Math. Phys. 236, 93 (2003); arXiv:nlin/0110045.
  10. A. V. Zotov and A. V. Smirnov, Theor. Math. Phys. 177, 1281 (2013).
  11. K. Atalikov and A. Zotov, JETP Lett. 117, 630 (2023); arXiv:2303.08020 [hep-th].
  12. R. J. Baxter, Ann. Phys. 76, 25 (1973).
  13. F. Calogero, Lett. Nuovo Cim. 13, 411 (1975).
  14. J. Moser, Adv. Math. 16, 1 (1975).
  15. M. A. Olshanetsky and A. M. Perelomov, Phys. Rep. 71, 313 (1981).
  16. I.M. Krichever, Funct. Anal. Appl. 14, 282 (1980).
  17. A. A. Akhmetshin, I. M. Krichever, and Y. S. Volvovski, Funct. Anal. Appl. 36, 253 (2002); arXiv:hep-th/0203192.
  18. A. Zotov, J. Phys. A 57, 315201 (2024); arXiv:2404.01898 [hep-th].
  19. K. Atalikov and A. Zotov, JETP Lett. 115, 757 (2022); arXiv:2204.12576 [math-ph].
  20. M. Jimbo, T. Miwa, and M. Okado, Nucl. Phys. B 300, 74 (1988).
  21. K. Atalikov and A. Zotov, Theoret. and Math. Phys. 219, 1004 (2024); arXiv:2403.00428 [hep-th].
  22. K. Atalikov and A. Zotov, J. Geom. Phys. 164, 104161 (2021); arXiv:2010.14297 [hep-th].
  23. A. G. Reiman and M. A. Semenov-Tian-Shansky, Zap. Nauchn. Sem. LOMI 150, 104 (1986).
  24. A. V. Zotov, SIGMA 7, 067 (2011); arXiv:1012.1072 [math-ph].
  25. A. Zabrodin and A. Zotov, JHEP 07, (2022) 023; arXiv: 2107.01697 [math-ph].
  26. A. Belavin and V. Drinfeld, Funct. Anal. Appl. 16, (1982) 159.
  27. A. Levin, M. Olshanetsky, and A. Zotov, JHEP 07, (2014) 012, arXiv:1405.7523 [hep-th].
  28. A. Levin, M. Olshanetsky, and A. Zotov, J. Phys. A: Math. Theor. 49, (2016) 395202; arXiv:1603.06101 [math-ph].
  29. M. Vasilyev and A. Zotov, Rev. Math. Phys. 31, (2019) 1930002; arXiv:1804.02777 [math-ph]
  30. A. Zotov, Funct. Anal. Its. Appl. 59, (2025) 142; arXiv:2407.13854 [nlin.SI].
  31. D. Domanevsky, A. Levin, M. Olshanetsky, and A. Zotov, Izvestiya: Mathematics (2026) to appear; arXiv:2501.08777 [math-ph].
  32. A. Levin, M. Olshanetsky, and A. Zotov, Eur. Phys. J. C 82, 635 (2022); arXiv:2202.10106 [hep-th].

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025