Уровень триптофановых сигнальных молекул у детей с различной динамикой развития ожирения

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Высокая заболеваемость ожирением у детей является крайне актуальной проблемой современной системы здравоохранения многих стран. Отмечается рост заболеваемости ожирением у детей и в России, что опасно не только развитием соматических сопутствующих патологий, но и нарушением социальной адаптации детей. Вне сомнения, поиск ранних биохимических показателей стабилизации и прогресса ожирения в более старшем возрасте имеет очень важное значение для формирования группы риска и своевременной профилактики развития ожирения и его осложнений. В нашем исследовании было показано, что при оценке различной динамики развития ожирения необходимо учитывать пол ребенка, что игнорируется во многих случаях. В качестве индикатора, ассоциированного со стабилизацией или прогрессированием ожирения у девочек, может рассматриваться снижение сывороточной концентрации серотонина. Тогда как у мальчиков, склонных к стабилизации и/или прогрессированию ожирения, в качестве маркера-предиктора может выступать сниженный сывороточный уровень индол-3-акрилата. Также потенциальным показателем стабилизации/прогресса ожирения у детей обоих полов может быть повышенный уровень индол-3-карбоксальдегида в кале.

Полный текст

Доступ закрыт

Об авторах

О. П. Шатова

Российский национальный исследовательский медицинский университет им. Н.И. Пирогова; Российский университет дружбы народов имени Патриса Лумумбы

Автор, ответственный за переписку.
Email: shatova.op@gmail.com
Россия, Москва; Москва

И. М. Колесникова

Российский национальный исследовательский медицинский университет им. Н.И. Пирогова; Национальный медицинский исследовательский центр эндокринологии

Email: shatova.op@gmail.com
Россия, Москва; Москва

Е. М. Ягодкина

Российский национальный исследовательский медицинский университет им. Н.И. Пирогова

Email: shatova.op@gmail.com
Россия, Москва

С. С. Кайдошко

Российский национальный исследовательский медицинский университет им. Н.И. Пирогова

Email: shatova.op@gmail.com
Россия, Москва

А. М. Гапонов

Научный центр цифровой и трансляционной биомедицины “Центр молекулярного здоровья”

Email: shatova.op@gmail.com
Россия, Москва

С. А. Румянцев

Российский национальный исследовательский медицинский университет им. Н.И. Пирогова; Национальный медицинский исследовательский центр эндокринологии

Email: shatova.op@gmail.com
Россия, Москва; Москва

А. В. Шестопалов

Российский национальный исследовательский медицинский университет им. Н.И. Пирогова; Национальный медицинский исследовательский центр эндокринологии

Email: shatova.op@gmail.com
Россия, Москва; Москва

Список литературы

  1. https://rosstat.gov.ru/storage/mediabank/Zdravoohran-2021.pdf
  2. Drozdz D, Alvarez-Pitti J, Wójcik M, Borghi C, Gabbianelli R, Mazur A, Herceg-čavrak V, Lopez-Valcarcel BG, Brzeziński M, Lurbe E, Wühl E (2021) Obesity and Cardiometabolic Risk Factors: From Childhood to Adulthood. Nutrients 13: 4176. https://doi.org/10.3390/NU13114176
  3. Leerkes EM, Buehler C, Calkins SD, Shriver LH, Wideman L (2020) Protocol for iGrow (Infant Growth and Development Study): biopsychosocial predictors of childhood obesity risk at 2 years. BMC Public Health 20: 1912. https://doi.org/10.1186/S12889-020-10003-0
  4. Lischka J, Schanzer A, Baumgartner M, de Gier C, Greber-Platzer S, Zeyda M (2022) Tryptophan Metabolism Is Associated with BMI and Adipose Tissue Mass and Linked to Metabolic Disease in Pediatric Obesity. Nutrients 14: 286. https://doi.org/10.3390/NU14020286
  5. Lee EY, Yoon KH (2018) Epidemic obesity in children and adolescents: risk factors and prevention. Front Med 12: 658–666. https://doi.org/10.1007/S11684-018-0640-1
  6. Chong B, Jayabaskaran J, Kong G, Chan YH, Chin YH, Goh R, Kannan S, Ng CH, Loong S, Kueh MTW, Lin C, Anand VV, Lee ECZ, Chew HSJ, Tan DJH, Chan KE, Wang JW, Muthiah M, Dimitriadis GK, Hausenloy DJ, Mehta AJ, Foo R, Lip G, Chan MY, Mamas MA, le Roux CW, Chew NWS (2023) Trends and predictions of malnutrition and obesity in 204 countries and territories: an analysis of the Global Burden of Disease Study 2019. EClinicalMedicine 57: 101850. https://doi.org/10.1016/J.ECLINM.2023.101850
  7. Zhao X, Niu Y, Zhao XL, Ruan HJ, Xiang Y, Wang LY, Feng Y, Tang QY (2023) Associations Between Serum TNF-α, IL-6, hs-CRP and GLMD in Obese Children and Adolescents: A Cross-Sectional Study. Diabetes Metab Syndr Obes 16: 3915–3923. https://doi.org/10.2147/DMSO.S434482
  8. Liaqat H, Parveen A, Kim SY (2022) Neuroprotective Natural Products’ Regulatory Effects on Depression via Gut-Brain Axis Targeting Tryptophan. Nutrients 14: 3270. https://doi.org/10.3390/NU14163270
  9. Shestopalov AV, Shatova OP, Zabolotneva AA, Gaponov AM, Moskaleva NE, Appolonova SA, Makarov VV, Yudin SM, Rumyantsev AG, Roumiantsev SA (2021) Coupling features of intestinal and serum indole pools in obesity. Problems of Biological Medical and Pharmaceutical Chemistry 24: 3–12. https://doi.org/10.29296/25877313-2021-10-01
  10. Shestopalov A V., Shatova OP, Gaponov AM, Moskaleva NE, Appolonova SA, Tutelyan AV, Makarov VV, Yudin SM, Rumyantsev SA (2020) The study of tryptophan metabolite concentrations in blood serum and fecal extracts from obese children. Biomed Khim 66: 494–501. https://doi.org/10.18097/PBMC20206606494
  11. Di Ciaula A, Bonfrate L, Khalil M, Garruti G, Portincasa P (2023) Contribution of the microbiome for better phenotyping of people living with obesity. Rev Endocr Metab Disord 24: 839–870. https://doi.org/10.1007/S11154-023-09798-1
  12. Ambroselli D, Masciulli F, Romano E, Catanzaro G, Besharat ZM, Massari MC, Ferretti E, Migliaccio S, Izzo L, Ritieni A, Grosso M, Formichi C, Dotta F, Frigerio F, Barbiera E, Giusti AM, Ingallina C, Mannina L (2023) New Advances in Metabolic Syndrome, from Prevention to Treatment: The Role of Diet and Food. Nutrients 15: 640. https://doi.org/10.3390/NU15030640
  13. Kozieł K, Urbanska EM (2023) Kynurenine Pathway in Diabetes Mellitus-Novel Pharmacological Target? Cells 12: 460. https://doi.org/10.3390/CELLS12030460
  14. Hou Y, Li J, Ying S (2023) Tryptophan Metabolism and Gut Microbiota: A Novel Regulatory Axis Integrating the Microbiome, Immunity, and Cancer. Metabolites 13: https://doi.org/10.3390/METABO13111166
  15. Shatova OP, Shestopalov AV (2023) Tryptophan Metabolism: A New Look at the Role of Tryptophan Derivatives in the Human Body. Biology Bulletin Reviews 13: 81–91. https://doi.org/10.1134/S2079086423020068
  16. Shestopalov AV, Shatova OP, Karbyshev MS, Gaponov AM, Moskaleva NE, Appolonova SA, Tutelyan AV, Makarov VV, Yudin SM, Roumiantsev SA (2022) “Kynurenine switch” and obesity.Bulletin of Siberian Medicine 20: 103–111. https://doi.org/10.20538/1682-0363-2021-4-103-111
  17. Correa-Burrows P, Rogan J, Blanco E, East P, Lozoff B, Gahagan S, Burrows R (2021) Resolving early obesity leads to a cardiometabolic profile within normal ranges at 23 years old in a two-decade prospective follow-up study. Sci Rep 11: 18927. https://doi.org/10.1038/S41598-021-97683-9
  18. Peterkova VA, Bezlepkina OB, Bolotova NV, Bogova EA, Vasyukova OV, Girsh YV, Kiyaev AV, Kostrova IB, Malievskiy OA, Mikhailova EG, Okorokov PL, Petryaykina EE, Taranushenko TE, Khramova EB (2021) Clinical guidelines “Obesity in children”. Problems of Endocrinology 67: 67–83. https://doi.org/10.14341/probl12802
  19. Bioanalytical Method Validation. Guidance for Industry. September 2013. Revision 1. U.S. Department of Health and Human Services. Food and Drug Administration
  20. Tan KML, Tint MT, Kothandaraman N, Yap F, Godfrey KM, Lee YS, Tan KH, Gluckman PD, Chong YS, Chong MFF, Eriksson JG, Cameron-Smith D (2022) Association of plasma kynurenine pathway metabolite concentrations with metabolic health risk in prepubertal Asian children. Int J Obes (Lond) 46:1128–1137. https://doi.org/10.1038/S41366-022-01085-4
  21. Favennec M, Hennart B, Caiazzo R, Leloire A, Yengo L, Verbanck M, Arredouani A, Marre M, Pigeyre M, Bessede A, Guillemin GJ, Chinetti G, Staels B, Pattou F, Balkau B, Allorge D, Froguel P, Poulain-Godefroy O (2015) The kynurenine pathway is activated in human obesity and shifted toward kynurenine monooxygenase activation. Obesity (Silver Spring) 23: 2066–2074. https://doi.org/10.1002/OBY.21199
  22. Tan KML, Tint MT, Kothandaraman N, Michael N, Sadananthan SA, Velan SS, Fortier MV, Yap F, Tan KH, Gluckman PD, Chong YS, Chong MFF, Lee YS, Godfrey KM, Eriksson JG, Cameron-Smith D (2022) The Kynurenine Pathway Metabolites in Cord Blood Positively Correlate with Early Childhood Adiposity. J Clin Endocrinol Metab 107: e2464–e2473. https://doi.org/10.1210/CLINEM/DGAC078
  23. Zhang S, Dang Y (2022) Roles of gut microbiota and metabolites in overweight and obesity of children. Front Endocrinol (Lausanne) 13: 994930. https://doi.org/10.3389/FENDO.2022.994930/PDF
  24. Shan S, Qiao Q, Yin R, Zhang L, Shi J, Zhao W, Zhou J, Li Z (2023) Identification of a Novel Strain Lactobacillus Reuteri and Anti-Obesity Effect through Metabolite Indole-3-Carboxaldehyde in Diet-Induced Obese Mice. J Agric Food Chem 7: 3239–3249. https://doi.org/10.1021/ACS.JAFC.2C05764
  25. Misch M, Puthanveetil P (2022) The Head-to-Toe Hormone: Leptin as an Extensive Modulator of Physiologic Systems. Int J Mol Sci 23: 5439. https://doi.org/10.3390/IJMS23105439
  26. Zurita-Cruz JN, Villasís-Keever MA, Manuel-Apolinar L, Damasio-Santana L, Garrido-Magaña E, Rivera-Hernández A de J (2023) Leptin/adiponectin ratio as a prognostic factor for increased weight gain in girls with central precocious puberty. Front Endocrinol (Lausanne) 14: 1101399. https://doi.org/10.3389/FENDO.2023.1101399/PDF
  27. Dicks LMT (2022) Gut Bacteria and Neurotransmitters. Microorganisms 10: 1838. https://doi.org/10.3390/MICROORGANISMS10091838
  28. Mawe GM, Hoffman JM (2013) Serotonin signalling in the gut — functions, dysfunctions and therapeutic targets. Nat Rev Gastroenterol Hepatol 10: 473–486. https://doi.org/10.1038/NRGASTRO.2013.105
  29. Yano JM, Yu K, Donaldson GP, Shastri GG, Ann P, Ma L, Nagler CR, Ismagilov RF, Mazmanian SK, Hsiao EY (2015) Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161: 264–276. https://doi.org/10.1016/J.CELL.2015.02.047
  30. Mandić AD, Woting A, Jaenicke T, Sander A, Sabrowski W, Rolle-Kampcyk U, von Bergen M, Blaut M (2019) Clostridium ramosum regulates enterochromaffin cell development and serotonin release. Sci Rep 9: 1177. https://doi.org/10.1038/S41598-018-38018-Z
  31. Legan TB, Lavoie B, Mawe GM (2022) Direct and indirect mechanisms by which the gut microbiota influence host serotonin systems. Neurogastroenterology and motility 34: e14346. https://doi.org/10.1111/NMO.14346
  32. Kelly JR, Kennedy PJ, Cryan JF, Dinan TG, Clarke G, Hyland NP (2015) Breaking down the barriers: The gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front Cell Neurosci 9: 392. https://doi.org/10.3389/FNCEL.2015.00392/PDF
  33. Portincasa P, Bonfrate L, Khalil M, De Angelis M, Calabrese FM, D’amato M, Wang DQH, Di Ciaula A (2021) Intestinal Barrier and Permeability in Health, Obesity and NAFLD. Biomedicines 10: 83. https://doi.org/10.3390/BIOMEDICINES10010083
  34. Wlodarska M, Luo C, Kolde R, d’Hennezel E, Annand JW, Heim CE, Krastel P, Schmitt EK, Omar AS, Creasey EA, Garner AL, Mohammadi S, O’Connell DJ, Abubucker S, Arthur TD, Franzosa EA, Huttenhower C, Murphy LO, Haiser HJ, Vlamakis H, Porter JA, Xavier RJ (2017) Indoleacrylic Acid Produced by Commensal Peptostreptococcus Species Suppresses Inflammation. Cell Host Microbe 22: 25–37.e6. https://doi.org/10.1016/J.CHOM.2017.06.007
  35. Flannigan KL, Nieves KM, Szczepanski HE, Serra A, Lee JW, Alston LA, Ramay H, Mani S, Hirota SA (2023) The Pregnane X Receptor and Indole-3-Propionic Acid Shape the Intestinal Mesenchyme to Restrain Inflammation and Fibrosis. Cell Mol Gastroenterol Hepatol 15:765–795. https://doi.org/10.1016/J.JCMGH.2022.10.014
  36. Ma X, Idle JR, Gonzalez FJ (2008) The pregnane X receptor: from bench to bedside. Expert Opin Drug Metab Toxicol 4: 895–908. https://doi.org/10.1517/17425255.4.7.895
  37. Barretto SA, Lasserre F, Huillet M, Régnier M, Polizzi A, Lippi Y, Fougerat A, Person E, Bruel S, Bétoulières C, Naylies C, Lukowicz C, Smati S, Guzylack L, Olier M, Théodorou V, Mselli-Lakhal L, Zalko D, Wahli W, Loiseau N, Gamet-Payrastre L, Guillou H, Ellero-Simatos S (2021) The pregnane X receptor drives sexually dimorphic hepatic changes in lipid and xenobiotic metabolism in response to gutmicrobiota in mice. Microbiome 9: 93. https://doi.org/10.1186/S40168-021-01050-9

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Индольный, серотониновый и кинурениновый пути метаболизма триптофана [4, 8].

Скачать (421KB)

© Российская академия наук, 2024