МОЛЕКУЛЯРНАЯ ОРГАНИЗАЦИЯ СЕКРЕЦИИ МЕДИАТОРА В НЕРВНО-МЫШЕЧНЫХ СИНАПСАХ СОМАТИЧЕСКОЙ МУСКУЛАТУРЫ ДОЖДЕВОГО ЧЕРВЯ LUMBRICUS TERRESTRIS
- Авторы: Нуруллин Л.Ф.1,2, Волков Е.М.2
-
Учреждения:
- Казанский институт биохимии и биофизики – структурное подразделение Федерального государственного бюджетного учреждения науки “Федеральный исследовательский центр “Казанский научный центр Российской академии наук”
- Казанский государственный медицинский университет
- Выпуск: Том 61, № 3 (2025)
- Страницы: 191-201
- Раздел: ЭКСПЕРИМЕНТАЛЬНЫЕ СТАТЬИ
- URL: https://ruspoj.com/0044-4529/article/view/695490
- DOI: https://doi.org/10.7868/S3034552925030044
- ID: 695490
Цитировать
Полный текст
Аннотация
В соматической мышце дождевого червяLumbricusterrestrisв зоне двигательных нервно-мышечных синапсов методами флуоресцентной микроскопии выявлено присутствие ферментов ацетилхолинэстеразы (АХЭ) и везикулярного АХ-транспортера (ВАХТ), а также α1, α2 и β1 субъединиц ионотропного никотинового АХ-рецепторно-канального комплекса (нАХР). В мышечном гомогенате показано присутствие медиатора ацетилхолина (АХ). Таким образом, в эволюционно-первичной соматической мускулатуре аннелид существует полностью сформированная холинергическая двигательная иннервация, аналогичная той, которая имеется у представителей более высокоорганизованных классов позвоночных животных, включая млекопитающих.
Об авторах
Л. Ф. Нуруллин
Казанский институт биохимии и биофизики – структурное подразделение Федерального государственного бюджетного учреждения науки “Федеральный исследовательский центр “Казанский научный центр Российской академии наук”; Казанский государственный медицинский университет
Автор, ответственный за переписку.
Email: lenizn@yandex.ru
Казань, Россия; Казань, Россия
Е. М. Волков
Казанский государственный медицинский университет
Email: euroworm@mail.ru
Казань, Россия
Список литературы
- Tansey EM (2006) Henry Dale and the discovery of
- acetylcholine. Comptes Rendus Biologies 329: 419–425.
- https://doi.org/10.1016/j.crvi.2006.03.012
- Brown DA (2019) Acetylcholine and cholinergic receptors.
- Brain Neurosci Adv 3: 2398212818820506.
- https://doi.org/10.1177/2398212818820506
- Zhang Y, Dai F, Chen N, Zhou D, Lee CH, Song C,
- Zhang Y, Zhang Z (2024) Structural insights into VAChT
- neurotransmitter recognition and inhibition. Cell Res 34:
- 665–668.
- https://doi.org/10.1038/s41422-024-00986-5
- Sinclair P, Kabbani N (2023) Ionotropic and metabotropic
- responses by alpha 7 nicotinic acetylcholine receptors.
- Pharmacol Res 197: 106975.
- https://doi.org/10.1016/j.phrs.2023.106975
- Kalamida D, Poulas K, Avramopoulou V, Fostieri E, Lagoumintzis
- G, Lazaridis K, Sideri A, Zouridakis M, Tzartos SJ
- (2007) Muscle and neuronal nicotinic acetylcholine receptors.
- Structure, function and pathogenicity. FEBS J
- 274: 3799–3845.
- https://doi.org/10.1111/j.1742-4658.2007.05935.x
- Lansdell SJ, Collins T, Goodchild J, Millar NS (2012) The
- Drosophila nicotinic acetylcholine receptor subunits Dα5
- and Dα7 form functional homomeric and heteromeric
- ion channels. BMC Neurosci 13: 73.
- https://doi.org/10.1186/1471-2202-13-73
- Rosenthal JS, Yuan Q (2021) Constructing and Tuning
- Excitatory Cholinergic Synapses: The Multifaceted Functions
- of Nicotinic Acetylcholine Receptors in Drosophila
- Neural Development and Physiology. Front Cell Neurosci
- 15: 720560.
- https://doi.org/10.3389/fncel.2021.720560
- Jones AK, Davis P, Hodgkin J, Sattelle DB (2007) The nicotinic
- acetylcholine receptor gene family of the nematode
- Caenorhabditis elegans: an update on nomenclature. Invert
- Neurosci 7: 129–131.
- https://doi.org/10.1007/s10158-007-0049-z
- Cohen E, Chatzigeorgiou M, Husson SJ, Steuer-Costa W,
- Gottschalk A, Schafer WR, Treinin M (2014) Caenorhabditis
- elegans nicotinic acetylcholine receptors are required
- for nociception. Mol Cell Neurosci 59: 85–96.
- https://doi.org/10.1016/j.mcn.2014.02.001
- Albeg A, Smith CJ, Chatzigeorgiou M, Feitelson DG,
- Hall DH, Schafer WR, Miller DM 3rd, Treinin M (2011) C.
- elegans multi-dendritic sensory neurons: morphology and
- function. Mol Cell Neurosci 46: 308–317.
- https://doi.org/10.1016/j.mcn.2010.10.001
- Barbagallo B, Prescott HA, Boyle P, Climer J, Francis MM
- (2010) A dominant mutation in a neuronal acetylcholine
- receptor subunit leads to motor neuron degeneration in
- Caenorhabditis elegans. J Neurosci 30: 13932–13942.
- https://doi.org/10.1523/jneurosci.1515-10.2010
- Gottschalk A, Almedom RB, Schedletzky T, Anderson SD,
- Yates JR 3rd, Schafer WR (2005) Identification and characterization
- of novel nicotinic receptor-associated proteins
- in Caenorhabditis elegans. EMBO J 24: 2566–2578.
- https://doi.org/10.1038/sj.emboj.7600741
- Ahmed NY, Knowles R, Dehorter N (2019) New Insights
- Into Cholinergic Neuron Diversity. Front Mol Neurosci
- 12: 204.
- https://doi.org/10.3389/fnmol.2019.00204
- He G, Li Y, Deng H, Zuo H (2023) Advances in the study
- of cholinergic circuits in the central nervous system. Ann
- Clin Transl Neurol 10: 2179–2191.
- https://doi.org/10.1002/acn3.51920
- Legay C (2018) Congenital myasthenic syndromes with
- acetylcholinesterase deficiency, the pathophysiological
- mechanisms. Ann N Y Acad Sci 1413: 104–110.
- https://doi.org/10.1111/nyas.13595
- Treinin M, Jin Y (2021) Cholinergic transmission in C. elegans:
- Functions, diversity, and maturation of ACh-activated
- ion channels. J Neurochem. 158: 1274–1291.
- https://doi.org/10.1111/jnc.15164
- ЖУРНАЛ ЭВОЛЮЦИОННОЙ БИОХИМИИ И ФИЗИОЛОГИИ том 61 № 3 2025
- 200 НУРУЛЛИН, ВОЛКОВ
- Stocker B, Bochow C, Damrau C, Mathejczyk T, Wolfenberg
- H, Colomb J, Weber C, Ramesh N, Duch C, Biserova
- NM, Sigrist S, Pfluger HJ (2018) Structural and Molecular
- Properties of Insect Type II Motor Axon Terminals.
- Front Syst Neurosci 12: 5.
- https://doi.org/10.3389/fnsys.2018.00005
- Walker RJ, Holden-Dye L, Franks CJ (1993) Physiological
- and pharmacological studies on annelid and nematode
- body wall muscle. Comp Biochem Physiol C Comp Pharmacol
- Toxicol 106: 49–58.
- https://doi.org/10.1016/0742-8413(93)90253-h
- Volkov EM, Nurullin LF, Volkov ME, Nikolsky EE, Vyskočil
- F (2011) Mechanisms of carbacholine and GABA
- action on resting membrane potential and Na+/K+-ATPase
- of Lumbricus terrestris body wall muscles. Comp Biochem
- Physiol A Mol Integr Physiol 158: 520–524.
- https://doi.org/10.1016/j.cbpa.2010.12.016
- Volkov EM, Nurullin LF, Nikolsky E, Vyskocil F (2007)
- Miniature excitatory synaptic ion currents in the earthworm
- Lumbricus terrestris body wall muscles. Physiol Res
- 56: 655–658.
- https://doi.org/10.33549/physiolres.931269
- Nurullin LF, Volkov EM (2024) Immunofluorescent Identification
- of Dystrophin, Actin, and Light and Heavy Myosin
- Chains in Somatic Cells of Earthworm Lumbricus
- terrestris. Cell Tiss Biol 18: 341–346.
- https://doi.org/10.1134/S1990519X24700287
- Nurullin LF, Volkov EM (2024) The Presence of Septin Proteins
- in the Neuromuscular Junction of Somatic Muscle in
- the Earthworm Lumbricus terrestris. Biophysics 69: 876–881.
- https://doi.org/10.1134/S0006350924700969
- Drewes CD, Pax RA (1974) Neuromuscular physiology of
- the longitudinal muscle of the earthworm, Lumbricus terrestris.
- Effects of different physiological salines. J Exp
- Biol 60: 445–52.
- https://doi.org/10.1242/jeb.60.2.445
- Rodriguez-Ithurralde D, Silveira R, Barbeito L, Dajas F
- (1983) Fasciculin, a powerful anticholinesterase polypeptide
- from Dendroaspis angusticeps venom. Neurochem
- Int 5: 267–274.
- https://doi.org/10.1016/0197-0186(83)90028-1
- Le Du MH, Marchot P, Bougis PE, Fontecilla-Camps JC
- (1992) 1.9-A resolution structure of fasciculin 1, an anti-
- acetylcholinesterase toxin from green mamba snake
- venom. J Biol Chem 267: 22122–22130.
- https://doi.org/10.2210/pdb1fas/pdb
- Duran R, Cervenansky C, Dajas F, Tipton KF (1994) Fasciculin
- inhibition of acetylcholinesterase is prevented by
- chemical modification of the enzyme at a peripheral site.
- Biochim Biophys Acta 1201: 381–388.
- https://doi.org/10.1016/0304-4165(94)90066-3
- Kalamida D, Poulas K, Avramopoulou V, Fostieri E, Lagoumintzis
- G, Lazaridis K, Sideri A, Zouridakis M, Tzartos SJ
- (2007) Muscle and neuronal nicotinic acetylcholine receptors.
- Structure, function and pathogenicity. FEBS J
- 274: 3799–3845.
- https://doi.org/10.1111/j.1742-4658.2007.05935.x
- Ho TNT, Abraham N, Lewis RJ (2020) Structure-Function
- of Neuronal Nicotinic Acetylcholine Receptor Inhibitors
- Derived From Natural Toxins. Front Neurosci
- 14: 609005.
- https://doi.org/10.3389/fnins.2020.609005
- Sloan MA, Reaves BJ, Maclean MJ, Storey BE, Wolstenholme
- AJ (2015) Expression of nicotinic acetylcholine receptor
- subunits from parasitic nematodes in Caenorhabditis
- elegans. Mol Biochem Parasitol 204: 44–50.
- https://doi.org/10.1016/j.molbiopara.2015.12.006
- Holden-Dye L, Joyner M, O'Connor V, Walker RJ (2013)
- Nicotinic acetylcholine receptors: a comparison of the
- nAChRs of Caenorhabditis elegans and parasitic nematodes.
- Parasitol Int 62: 606–615.
- https://doi.org/10.1016/j.parint.2013.03.004
- Sellings L, Pereira S, Qian C, Dixon-McDougall T,
- Nowak C, Zhao B, Tyndale RF, van der Kooy D (2013)
- Nicotine-motivated behavior in Caenorhabditis elegans
- requires the nicotinic acetylcholine receptor subunits acr-
- 5 and acr-15. Eur J Neurosci 37: 743–756.
- https://doi.org/10.1111/ejn.12099
- Lansdell SJ, Collins T, Goodchild J, Millar NS (2012) The
- Drosophila nicotinic acetylcholine receptor subunits Dα5
- and Dα7 form functional homomeric and heteromeric
- ion channels. BMC Neurosci 13: 73.
- https://doi.org/10.1186/1471-2202-13-73
- Elwary SM, Chavan B, Schallreuter KU (2006) The vesicular
- acetylcholine transporter is present in melanocytes
- and keratinocytes in the human epidermis. J Invest Dermatol
- 126: 1879–1884.
- https://doi.org/10.1038/sj.jid.5700268
- Banzai K, Adachi T, Izumi S (2015) Comparative analyses
- of the cholinergic locus of ChAT and VAChT and its expression
- in the silkworm Bombyx mori. Comp Biochem
- Physiol B Biochem Mol Biol 185: 1–9.
- https://doi.org/10.1016/j.cbpb.2015.03.001
- Schafer MK, Weihe E, Varoqui H, Eiden LE, Erickson JD
- (1994) Distribution of the vesicular acetylcholine transporter
- (VAChT) in the central and peripheral nervous systems
- of the rat. J Mol Neurosci 5: 1–26.
- https://doi.org/10.1007/bf02736691
- Maeda M, Ohba N, Nakagomi S, Suzuki Y, Kiryu-Seo S,
- Namikawa K, Kondoh W, Tanaka A, Kiyama H (2004) Vesicular
- acetylcholine transporter can be a morphological
- marker for the reinnervation to muscle of regenerating
- motor axons. Neurosci Res 48: 305–314.
- https://doi.org/10.1016/j.neures.2003.11.008
- Alfonso A, Grundahl K, Duerr JS, Han HP, Rand JB (1993)
- The Caenorhabditis elegans unc-17 gene: a putative vesicular
- acetylcholine transporter. Science 261: 617–619.
- https://doi.org/10.1126/science.8342028
- Schwarz J, Bringmann H (2017) Analysis of the NK2
- homeobox gene ceh-24 reveals sublateral motor neuron
- control of left-right turning during sleep. Elife 6: e24846.
- https://doi.org/10.7554/elife.24846
- Mathews EA, Mullen GP, Hodgkin J, Duerr JS, Rand JB
- (2012) Genetic interactions between UNC-17/VAChT
- and a novel transmembrane protein in Caenorhabditis elegans.
- Genetics 192: 1315–1325.
- https://doi.org/10.1534/genetics.112.145771
- Pezzementi L, Chatonnet A (2010) Evolution of cholinesterases
- in the animal kingdom. Chem Biol Interact 187: 27–33.
- https://doi.org/10.1016/j.cbi.2010.03.043
- De Boer D, Nguyen N, Mao J, Moore J, Sorin EJ (2021) A
- Comprehensive Review of Cholinesterase Modeling and
- Simulation. Biomolecules 11: 580.
- https://doi.org/10.3390/biom11040580
- ЖУРНАЛ ЭВОЛЮЦИОННОЙ БИОХИМИИ И ФИЗИОЛОГИИ том 61 № 3 2025
- МОЛЕКУЛЯРНАЯ ОРГАНИЗАЦИЯ СЕКРЕЦИИ МЕДИАТОРА В НЕРВНО-МЫШЕЧНЫХ... 201
- Huchard E, Martinez M, Alout H, Douzery EJ, Lutfalla G,
- Berthomieu A, Berticat C, Raymond M, Weill M (2006)
- Acetylcholinesterase genes within the Diptera: takeover
- and loss in true flies. Proc Biol Sci 273: 2595–2604.
- https://doi.org/10.1098/rspb.2006.3621
- Cha DJ, Lee SH (2015) Evolutionary origin and status of
- two insect acetylcholinesterases and their structural conservation
- and differentiation. Evol Dev 17: 109–119.
- https://doi.org/10.1111/ede.12111
- Grauso M, Culetto E, Combes D, Fedon Y, Toutant JP, Arpagaus
- M (1998) Existence of four acetylcholinesterase
- genes in the nematodes Caenorhabditis elegans and Caenorhabditis
- briggsae. FEBS Lett 424: 279–284.
- https://doi.org/10.1016/s0014-5793(98)00191-4
- Combes D, Fedon Y, Toutant JP, Arpagaus M (2001) Acetylcholinesterase
- genes in the nematode Caenorhabditis
- elegans. Int Rev Cytol 209: 207–239.
- https://doi.org/10.1016/s0074-7696(01)09013-1
- Wu L, Hiebert LS, Klann M, Passamaneck Y, Bastin BR,
- Schneider SQ, Martindale MQ, Seaver EC, Maslakova SA,
- Lambert JD (2020) Genes with spiralian-specific protein
- motifs are expressed in spiralian ciliary bands. Nat Commun
- 11: 4171.
- https://doi.org/10.1038/s41467-020-17780-7
- Budd GE, Jensen S (2017) The origin of the animals and a
- 'Savannah' hypothesis for early bilaterian evolution. Biol
- Rev Camb Philos Soc 92: 446–473.
- https://doi.org/10.1111/brv.12239
- Burkhardt P, Jekely G (2021) Evolution of synapses and
- neurotransmitter systems: The divide-and-conquer model
- for early neural cell-type evolution. Curr Opin Neurobiol
- 71: 127–138.
- https://doi.org/10.1016/j.conb.2021.11.002
- Moroz LL, Romanova DY, Kohn AB (2021) Neural versus
- alternative integrative systems: molecular insights into
- origins of neurotransmitters. Philos Trans R Soc Lond B
- Biol Sci 376: 20190762.
- https://doi.org/10.1098/rstb.2019.0762
- Horiuchi Y, Kimura R, Kato N, Fujii T, Seki M, Endo T,
- Kato T, Kawashima K (2003) Evolutional study on acetylcholine
- expression. Life Sci. 72: 1745–1756.
- https://doi.org/10.1016/s0024-3205(02)02478-5
- Picciotto MR, Higley MJ, Mineur YS (2012) Acetylcholine
- as a neuromodulator: cholinergic signaling shapes nervous
- system function and behavior. Neuron 76: 116–129.
- https://doi.org/10.1016/j.neuron.2012.08.036
- Brown DA (2019) Acetylcholine and cholinergic receptors.
- Brain Neurosci Adv 3: 2398212818820506.
- https://doi.org/10.1177/2398212818820506
- Izquierdo PG, Calahorro F, Thisainathan T, Atkins JH,
- Haszczyn J, Lewis CJ, Tattersall JEH, Green AC, Holden-
- Dye L, O'Connor V (2022) Cholinergic signaling at the
- body wall neuromuscular junction distally inhibits feeding
- behavior in Caenorhabditis elegans. J Biol Chem 298: 101466.
- https://doi.org/10.1016/j.jbc.2021.101466
- Langeloh H, Wasser H, Richter N, Bicker G, Stern M (2018)
- Neuromuscular transmitter candidates of a centipede
- (Lithobius forficatus, Chilopoda). Front Zool 15: 28.
- https://doi.org/10.1186/s12983-018-0274-9
- Stern M, Bicker G (2008) Mixed cholinergic/glutamatergic
- neuromuscular innervation of Onychophora: a combined
- histochemical/electrophysiological study. Cell Tissue
- Res 333: 333–338.
- https://doi.org/10.1007/s00441-008-0638-0
- Katz B, Miledi R (1977) Transmitter leakage from motor
- nerve endings. Proc R Soc Lond B Biol Sci 196: 59–72.
- https://doi.org/10.1098/rspb.1977.0029
- Egge N, Arneaud SLB, Fonseca RS, Zuurbier KR, McClendon
- J, Douglas PM (2021) Trauma-induced regulation of
- VHP-1 modulates the cellular response to mechanical
- stress. Nat Commun 12: 1484.
- https://doi.org/10.1038/s41467-021-21611-8
- Hocking AM, Gibran NS (2010) Mesenchymal stem cells:
- paracrine signaling and differentiation during cutaneous
- wound repair. Exp Cell Res 316: 2213–2219.
Дополнительные файлы




