Acenaphto[1,2-k]fluoranthene: Role of the Carbon Framework Transformation for Tuning Electronic Properties
- Authors: Brotsman V.A.1, Lukonina N.S.1, Rybalchenko A.V.1, Kosaya M.P.1, Ioffe I.N.1, Lysenko K.A.1, Sidorov L.N.1, Pshenichnyuk S.A.2, Asfandiarov N.L.2, Goryunkov A.A.1
- 
							Affiliations: 
							- Faculty of Chemistry, Moscow State University
- Goryunkov Institute of Molecular and Crystal Physics, Ufa Federal Research Center, Russian Academy of Sciences
 
- Issue: Vol 97, No 7 (2023)
- Pages: 996-1010
- Section: STRUCTURE OF MATTER AND QUANTUM CHEMISTRY
- Submitted: 27.02.2025
- Published: 01.07.2023
- URL: https://ruspoj.com/0044-4537/article/view/668707
- DOI: https://doi.org/10.31857/S004445372307004X
- EDN: https://elibrary.ru/SKBBZT
- ID: 668707
Cite item
Abstract
Acenaphtho[1,2-k]fluoranthene (1) is synthesized via tandem cyclization during the dehydrofluorination of 1,4-di(1-naphthyl)-2,5-difluorobenzene (2) on activated γ-Al2O3. Presence of residual hydroxyl groups in alumina reduce the yield of target product 1 because of the side hydrolysis of fluoroarenes with the formation a product of partial cyclization, 9-(1-naphthyl)fluoranthen-8-ol (1b). The formation of negative ions (NI) of compounds 1 and 2 in the gas phase is studied by means of dissociative electron attachment (DEA) spectroscopy. Long-lived molecular NIs 1 and 2 are registered at the thermal energies of electrons, and patterns of their fragmentation are established. The adiabatic electron affinities of compounds 1 and 2 are estimated in the Arrhenius approximation and equal 1.17 ± 0.12 and 0.71 ± 0.07 eV, respectively, which agree with data from quantum chemical modeling at the level of the density functional theory (DFT). Electronic transitions for compounds 1 and 2 are studied via optical absorption and fluorescence spectroscopy. Fluorescence quantum yields are measured, and the resulting data are interpreted according to the time dependent DFT. The electrochemical properties of compounds 1, 1b, and 2 are studied via cyclic voltamperometry, and the levels of boundary molecular orbitals are estimated on the basis of their formal potentials of reduction and oxidation.
About the authors
V. A. Brotsman
Faculty of Chemistry, Moscow State University
														Email: aag@thermo.chem.msu.ru
				                					                																			                												                								119991, Moscow, Russia						
N. S. Lukonina
Faculty of Chemistry, Moscow State University
														Email: aag@thermo.chem.msu.ru
				                					                																			                												                								119991, Moscow, Russia						
A. V. Rybalchenko
Faculty of Chemistry, Moscow State University
														Email: aag@thermo.chem.msu.ru
				                					                																			                												                								119991, Moscow, Russia						
M. P. Kosaya
Faculty of Chemistry, Moscow State University
														Email: aag@thermo.chem.msu.ru
				                					                																			                												                								119991, Moscow, Russia						
I. N. Ioffe
Faculty of Chemistry, Moscow State University
														Email: aag@thermo.chem.msu.ru
				                					                																			                												                								119991, Moscow, Russia						
K. A. Lysenko
Faculty of Chemistry, Moscow State University
														Email: aag@thermo.chem.msu.ru
				                					                																			                												                								119991, Moscow, Russia						
L. N. Sidorov
Faculty of Chemistry, Moscow State University
														Email: aag@thermo.chem.msu.ru
				                					                																			                												                								119991, Moscow, Russia						
S. A. Pshenichnyuk
Goryunkov Institute of Molecular and Crystal Physics, Ufa Federal Research Center, Russian Academy of Sciences
														Email: aag@thermo.chem.msu.ru
				                					                																			                												                								450075, Ufa, Russia						
N. L. Asfandiarov
Goryunkov Institute of Molecular and Crystal Physics, Ufa Federal Research Center, Russian Academy of Sciences
														Email: aag@thermo.chem.msu.ru
				                					                																			                												                								450075, Ufa, Russia						
A. A. Goryunkov
Faculty of Chemistry, Moscow State University
							Author for correspondence.
							Email: aag@thermo.chem.msu.ru
				                					                																			                												                								119991, Moscow, Russia						
References
- Ostroverkhova O. // Chem. Rev. 2016. V. 116. № 22. P. 13279.
- Wang C., Dong H., Hu W. et al. // Ibid. 2012. V. 112. № 4. P. 2208.
- Segawa Y., Ito H., Itami K. // Nat. Rev. Mater. 2016. V. 1. № 1. P. 15002.
- Solà M. // Front. Chem. 2013. V. 1. P. 22.
- Majewski M.A., Stępień M. // Angew. Chem. Int. Ed. 2019. V. 58. № 1. P. 86.
- Amsharov K.Yu., Kabdulov M.A., Jansen M. // Ibid. 2012. V. 51. № 19. P. 4594.
- Koper C., Sarobe M., Jenneskens L.W. // Phys. Chem. Chem. Phys. 2004. V. 6. № 2. P. 319.
- Lu R.-Q., Zheng Y.-Q., Zhou Y.-N. et al. // J. Mater. Chem. A. 2014. V. 2. № 48. P. 20515.
- Akhmetov V., Feofanov M., Papaianina O. et al. // Chem. Eur. J. 2019. V. 25. № 50. P. 11609.
- Gracheva S.V., Yankova T.S., Kosaya M.P. et al. // Phys. Chem. Chem. Phys. 2022. V. 24. № 4. P. 26998.
- Sheldrick G.M. // Acta Cryst. 2008. V. A64. P. 112.
- Trasatti S. // Pure Appl. Chem. 1988. V. 58. P. 955.
- Cardona C.M., Li W., Kaifer A.E. et al. // Adv. Mater. 2011. V. 23. № 20. P. 2367.
- Хвостенко В.И. Масс-спектрометрия отрицательных ионов в органической химии. М.: Наука, 1981. 163 с.
- Pshenichnyuk S.A., Vorob’ev A.S., Modelli A. // J. Chem. Phys. 2011. V. 135. № 18. P. 184301.
- Edelson D., Griffiths J.E., McAfee K.B. // Ibid. 1962. V. 37. № 4. P. 917.
- Пшеничнюк С.А., Асфандиаров Н.Л., Воробьев А.С., Матейчик Ш. // Успехи. физ. наук. 2022. Т. 192. С. 177 (Pshenichnyuk S.A., Asfandiarov N.L., Vorob’ev A.S. et al. // Phys.-Usp. 2022. V. 65. № 2. P. 163).
- Lorquet J.C. // Mass Spectrom. Rev. 1994. V. 13. № 3. P. 233.
- Asfandiarov N.L., Pshenichnyuk S.A., Vorob’ev A.S. et al. // Rapid Commun. Mass Spectrom. 2015. V. 29. № 9. P. 910.
- Asfandiarov N.L., Pshenichnyuk S.A., Vorob’ev A.S. et al. // Ibid. 2014. V. 28. № 14. P. 1580.
- Макаров А.А., Малиновский А.Л., Рябов Е.А. // Успехи. физ. наук. 2012. Т. 182. С. 1047 (Makarov A.A., Malinovsky A.L., Ryabov E.A. // Phys.-Usp. 2012. V.55. № 10. P. 977).
- Chen E.S., Chen E.C.M. // Rapid Commun Mass Spectrom. 2018. V. 32. № 7. P. 604.
- Asfandiarov N.L., Muftakhov M.V., Pshenichnyuk S.A. et al. // J. Chem. Phys. 2021. V. 155. № 24. P. 244302.
- Asfandiarov N.L., Muftakhov M.V., Rakhmeev R.G. et al. // J. Electron. Spectros. Relat. Phenomena. 2022. V. 256. P. 147178.
- Schulz G.J. // Rev. Mod. Phys. 1973. V. 45. № 3. P. 378.
- Jordan K.D., Burrow P.D. // Chem. Rev. 1987. V. 87. № 3. P. 557.
- Scheer A.M., Burrow P.D. // J. Phys. Chem. B. 2006. V. 110. № 36. P. 17751.
- Modelli A. // Phys. Chem. Chem. Phys. 2003. V. 5. № 14. P. 2923.
- Adamo C., Barone V. // J. Chem. Phys. 1999. V. 110. № 13. P. 6158.
- Weigend F., Ahlrichs R. // Phys. Chem. Chem. Phys. 2005. V. 7. P. 3297.
- Granovsky A.A. Firefly v. 8.2.0 (Formerly PC GAMESS), http://classic.chem.msu.su/gran/firefly/index.html. 2016.
- Schmidt M.W., Baldridge K.K., Boatz J.A. et al. // J. Comput. Chem. 1993. V. 14. № 11. P. 1347.
- Vladimir A., Mikhail F., Amsharov K. // RSC Adv. 2020. V. 10. № 18. P. 10879.
- Papaianina O., Amsharov K.Yu. // Chem. Commun. 2016. V. 52. № 7. P. 1505.
- Amsharov K. // Phys. Status Solidi B. 2016. V. 253. № 12. P. 2473.
- Bayer J., Herberger J., Holz L. et al. // Chem. Eur. J. 2020. V. 26. № 72. P. 17546.
- Papaianina O., Akhmetov V.A., Goryunkov A.A. et al. // Angew. Chem. Int. Ed. 2017. V. 56. № 17. P. 4834.
- Prins R. // J. Catal. 2020. V. 392. P. 336.
- Levin I., Brandon D. // J. Am. Ceram. Soc. 2005. V. 81. № 8. P. 1995.
- Илленбергер Е., Смирнов Б.М. // Успехи. физ. наук. 1998. Т. 168. С. 731 (Illenberger E., Smirnov B.M. // Phys.-Usp. 1998. V. 41. № 7. P. 651).
- Christophorou L.G. // Adv. Electron. Electron Phys. 1978. V. 46. P. 55.
- Collins P.M., Christophorou L.G., Chaney E.L. et al. // Chem. Phys. Lett. 1970. V. 4. № 10. P. 646.
- Васильев Ю.В., Мазунов В.А. // Письма в ЖЭТФ. 1990. Т. 51. С. 129 (Vasil’ev Yu.V., Mazunov V.A. // JETP Lett. 1990. V. 51. P. 144).
- Spisak S.N., Li J., Rogachev A.Yu. et al. // Organometallics. 2016. V. 35. P. 3105.
- Plummer B.F., Steffen I.K., Braley T.L. et al. // J. Am. Chem. Soc. 1993. V. 115. P. 11542.
- Berlman I. Handbook of florescence spectra of Aromatic Molecules. 2nd Edition. New York and London: Academic Press. 1971. P. 473.
- Clar E., Stephen J.F. // Tetrahedron. 1964. V. 20. № 6. P. 1559.
- Plummer B.F., Plummer J.M., Reese W.G. // J. Phys. Chem. 1994. V. 98. № 31. P. 7470.
- Bard A.J., Faulkner L.R. Electrochemical methods: fundamentals and applications. 2nd ed. New York: Wiley, 2001. P. 833.
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted Subscription or Fee Access
		                                							Subscription or Fee Access
		                                					







