Vibrationally Excited Ozone in Kinetics of O/N/Ar Mixtures after Ozone Photolysis
- Autores: Mankelevich Y.A.1, Rakhimova T.V.1, Voloshin D.G.1, Chukalovskii A.A.1
- 
							Afiliações: 
							- Skobeltsyn Institute of Nuclear Physics, Moscow State University
 
- Edição: Volume 97, Nº 5 (2023)
- Páginas: 747-759
- Seção: PHOTOCHEMISTRY, MAGNETOCHEMISTRY, MECHANOCHEMISTRY
- ##submission.dateSubmitted##: 27.02.2025
- ##submission.datePublished##: 01.05.2023
- URL: https://ruspoj.com/0044-4537/article/view/668748
- DOI: https://doi.org/10.31857/S0044453723050151
- EDN: https://elibrary.ru/MSPKFI
- ID: 668748
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
The developed kinetics of the vibrationally excited states of ozone (with excitation of up to five vibrational quanta), built into the chemical kinetics of O/N/Ar mixtures, was used to model the series of photolysis experiments of V.N. Azyazov et al. The experimental and calculated dynamics of O3 and O2(a1∆) in various O3/O2/Ar mixtures were compared. The dynamics of chemiluminescent radiation of NO∗2NO2∗ in the titration technique and the applicability of this technique to measuring the dynamics of O atoms in an O3/O2/N2O/Ar mixture were considered. The dynamics of various states of O3(v1,v2,v3) after ozone photolysis was analyzed in detail. The role of these states in the acceleration of the chemical conversion of oxygen components and nitrogen oxides, occurring with competition with ozone vibrational relaxation, was considered.
Palavras-chave
Sobre autores
Yu. Mankelevich
Skobeltsyn Institute of Nuclear Physics, Moscow State University
														Email: ymankelevich@mics.msu.su
				                					                																			                												                								119234, Moscow, Russia						
T. Rakhimova
Skobeltsyn Institute of Nuclear Physics, Moscow State University
														Email: dvoloshin@gw.mics.msu.su
				                					                																			                												                								119234, Moscow, Russia						
D. Voloshin
Skobeltsyn Institute of Nuclear Physics, Moscow State University
														Email: dvoloshin@gw.mics.msu.su
				                					                																			                												                								119234, Moscow, Russia						
A. Chukalovskii
Skobeltsyn Institute of Nuclear Physics, Moscow State University
							Autor responsável pela correspondência
							Email: dvoloshin@gw.mics.msu.su
				                					                																			                												                								119234, Moscow, Russia						
Bibliografia
- Kaufmann M., Gil-López S., López-Puertas M. et al. // Journal of Atmospheric and Solar-Terrestrial Physics. 2006. V. 68. № 2. P. 202.
- Vlasov M., Klopovsky K., Lopaev D. et al. // Cosmic Research. 1997. V. 35. № 3. P. 219.
- Azyazov V.N., Heaven M.C. // International Journal of Chemical Kinetics. 2014. V. 47. № 2. P. 93.
- Торбин А.П., Першин А.А., Азязов В.Н. // Физика и электроника. Изв. Самарск. научн. центра РАН. 2014. V. 16. № 4. P. 17.
- Першин А.А., Торбин А.П., Хэвен М. и др. // Краткие сообщения по физике Физического института им. П.Н. Лебедева РАН. 2015. V. 12. P. 74.
- Azyazov V.N., Mikheyev P., Postell D. et al. // Chem.Phys. Lett. 2009. V. 482. № 1–3. P. 56.
- Torbin A.P., Mikheyev P.A., Pershin A.A. et al. // “Molecular Singlet Delta Oxygen Quenching Kinetics in the EOIL System” SPIE Proceedings 2015/02/03 2015
- Lopaev D.V., Malykhin E.M., Zyryanov S.M. // Journal of Physics D: Applied Physics. 2010. V. 44. № 1. P. 015202.
- Marinov D., Guerra V., Guaitella O. et al. // Plasma Sources Science and Technology. 2013. V. 22. № 5. P. 055018.
- Ellerweg D., von Keudell A., Benedikt J. // Plasma Sources Science and Technology. 2012. V. 21. № 3. P. 034019.
- Booth J.-P., Guaitella O., Baratte E. et al. // Plasma Sources Sci. Technol. In print. 2022.
- Klopovskii K., Kovalev A., Lopaev D. et al. // J. Exp. Theor. Phys. 1995. V. 80. P. 603.
- Klopovskii K., Popov N., Proshina O. et al. // Plasma Physics Reports. 1997. V. 23. P. 165.
- Kogelschatz U. // Plasma Chemistry and Plasma Processing. 2003. V. 23. № 1. P. 1.
- Самойлович В.Г., Гибалов В.И., Козлов К.В. Физическая химия барьерного разряда. М.: Изд-во МГУ, 1989.
- Mikheyev P.A., Demyanov A.V., Kochetov I.V. et al. // Plasma Sources Science and Technology. 2020. V. 29. № 1. P. 015012.
- Зосимов А.В., Лунин В.В., Самойлович В.Г. и др. // Журн. физ.химии. 2016. V. 90. № 8. P. 1279.
- Манкелевич Ю.А., Поройков А.Ю., Рахимова Т.В. и др. // Журн. физ. химии. 2016. V. 90. № 9. P. 1421.
- Манкелевич Ю.А., Воронина Е.Н., Поройков А.Ю. и др. // Физика плазмы. 2016. V. 42. № 10. P. 912.
- von Rosenberg C.W., Trainor D.W. // J. Chem. Phys. 1974. V. 61. № 6. P. 2442.
- Rawlins W.T., Armstrong R.A. // J. Chem. Phys. 1987. V. 87. № 9. P. 5202.
- Steinfeld J.I., Adler-Golden S.M., Gallagher J.W. // J. Phys. and Chem. Ref. Data. 1987. V. 16. № 4. P. 911.
- Rawlins W.T. // J. Geophys. Res. 1985. V. 90. № A12. P. 12283.
- Booth J.P, Chatterjee A., Guaitella O. et al. // Plasma Sources Sci. Technol. 2022. V. 31. № 6. P. 065012.
- Braginskiy O.V., Vasilieva A.N., Klopovskiy K.S. et al. // J. Physics D: Applied Physics. 2005. V. 38. № 19. P. 3609.
- Ali A.A., Ogryzlo E.A., Shen Y.Q. et al. // Canad. J. Physics. 1986. V. 64. № 12. P. 1614.
- Castle K.J., Black L.A., Pedersen T.J. // J. Phys.Chem. A. 2014. V. 118. № 25. P. 4548.
- Rawlins W.T., Caledonia G.E., Armstrong R.A. // J. Chem. Phys. 1987. V. 87. № 9. P. 5209.
- Baulch D.L., Cox R.A., Hampson R.F. et al. // J. Phys. and Chem. Ref. Data. 1980. V. 9. № 2. P. 295.
- Zeninari V., Tikhomirov B.A., Ponomarev Y.N. et al. // J. Chem. Phys. 2000. V. 112. № 4. P. 1835.
- Baulch D.L., Cox R.A., Hampson R.F. et al. // J. Phys. and Chem. Ref. Data. 1984. V. 13. № 4. P. 1259.
- Kurylo M.J., Braun W., Kaldor A. et al. // J. Photochem. 1974. V. 3. № 1. P. 71.
- Nikitin E.E., Umanskii S.Y. Theory of Slow Atomic Collisions. Springer Berlin Heidelberg, 1984.
- Лунин В.В., Попович М.П., Ткаченко С.Н. Физическая химия озона. М.: Изд-во МГУ, 1998. 478 с.
- Ellis D.M., McGarvey J.J., McGrath W.D. // Nature Physical Science. 1971. V. 229. № 5. P. 153.
- Manion J.A., Huie R.E, Levin R.D. et al. // NIST Chemical Kinetics Database, NIST Standard Reference Database 17, Version 7.0 (Web Version), Release 1.6.8, Data version 2015.09: National Institute of Standards and Technology, Gaithersburg, Maryland, 20899-8320 2015.
- Atkinson R., Baulch D.L., Cox R.A. et al. // J. Phys. and Chem. Ref. Data. 1997. V. 26. № 3. P. 521.
- Schurath U., Lippmann H.H., Jesser B. // Berichte der Bunsengesellschaft für Physikalische Chemie. 1981. V. 85. № 8. P. 807.
- Savarino J., Bhattacharya S.K., Morin S. et al. // J. Chem. Phys. 2008. V. 128. № 19. P. 194303.
- Hui K.K., Cool T.A. // J. Chem. Phys. 1978. V. 68. № 3. P. 1022.
- Gudem M., Hazra A. // J. Phys.Chem. A. 2018. V. 123. № 4. P. 715.
- Adler-Golden S.M. // J. Phys.Chem. 1989. V. 93. № 2. P. 691.
- Fontijn A., Meyer C.B., Schiff H.I. // J. Chem. Phys. 1964. V. 40. № 1. P. 64.
- Clough P.N., Thrush B.A. // Trans. Farad. Soc. 1967. V. 63. P. 915.
- Greaves J.C., Garvin D. // The Journal of Chemical Physics. 1959. V. 30. № 1. P. 348.
- Tanaka Y., Shimayu M. // J. Sci. Research Inst. (Tokyo). 1949. V. 43. P. 241.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 






