Закономерности адсорбции белков разной молекулярной массы на природных алюмосиликатных нанотрубках
- Autores: Атякшева Л.Ф.1, Костюков И.А.1, Фастов С.А.2, Федосов Д.А.1, Шуткина О.В.1
- 
							Afiliações: 
							- Московский государственный университет имени М.В. Ломоносова
- ООО «Нанотехнологии и инновации»
 
- Edição: Volume 98, Nº 2 (2024)
- Páginas: 136-143
- Seção: PHYSICAL CHEMISTRY OF NANOCLUSTERS, SUPRAMOLECULAR STRUCTURES, AND NANOMATERIALS
- ##submission.dateSubmitted##: 27.02.2025
- ##submission.datePublished##: 23.09.2024
- URL: https://ruspoj.com/0044-4537/article/view/669080
- DOI: https://doi.org/10.31857/S0044453724020136
- EDN: https://elibrary.ru/RCTRPG
- ID: 669080
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
Исследована адсорбция белков с различными молекулярными массами – лизоцима (MR= 14300), гемоглобина (MR=65000), бычьего сывороточного альбумина (MR=66000) и щелочной фосфатазы (MR=138000) на галлуазитах, средние значения внутренних диаметров нанотрубок которых составляют 12.5, 30 и 50 нм соответственно. Получены изотермы адсорбции, определены предельные величины адсорбции, из которых рассчитаны площадки, приходящиеся на одну молекулу белка на поверхности галлуазита. Сделан вывод, что величина адсорбции белка зависит как от его молекулярной массы (размера), так и от внутреннего диаметра нанотрубок. Внутренняя поверхность образцов галлуазита обладает различной доступностью для белковых молекул: при диаметре нанотрубок 12.5 нм она недоступна для адсорбции всех исследованных белков. Наибольшую доступность внутренней поверхности для белковых молекул показал галлуазит c внутренними диаметрами нанотрубок 50 нм.
Palavras-chave
Texto integral
 
												
	                        Sobre autores
Л. Атякшева
Московский государственный университет имени М.В. Ломоносова
							Autor responsável pela correspondência
							Email: Atyaksheva@phys.chem.msu.ru
				                					                																			                												                	Rússia, 							Москва						
И. Костюков
Московский государственный университет имени М.В. Ломоносова
														Email: Atyaksheva@phys.chem.msu.ru
				                					                																			                												                	Rússia, 							Москва						
С. Фастов
ООО «Нанотехнологии и инновации»
														Email: Atyaksheva@phys.chem.msu.ru
				                					                																			                												                	Rússia, 							Москва						
Д. Федосов
Московский государственный университет имени М.В. Ломоносова
														Email: Atyaksheva@phys.chem.msu.ru
				                					                																			                												                	Rússia, 							Москва						
О. Шуткина
Московский государственный университет имени М.В. Ломоносова
														Email: Atyaksheva@phys.chem.msu.ru
				                					                																			                												                	Rússia, 							Москва						
Bibliografia
- Joussein E., Petit S., Churchman J., et al. // Clay Minerals. 2005. V. 40. P. 383. https://doi.org/10.1180/0009855054040180
- Yuan P., Tan D., Annabi-Bergaya F. // App. Clay Sci. 2015. V. 112–113. P. 75. https://doi.org/10.1016/j.clay.2015.05.001
- Yang H., Zhang Y., Ouyang J. // Developm. Clay Sci. 2016. V. 7. P. 67. https://doi.org/10.1016/B978-0-08-100293-3.00004-2
- Anastopoulos I., Mittal A., Usman M., et al. // J. Mol. Liq. 2018. V. 269. P. 855. https://doi.org/10.1016/j.molliq.2018.08.104
- Santos A.C., Ferreira C., Veiga. F., et al. // Adv. Colloid Interface Sci. 2018. V. 257. P. 58. https://doi.org/10.1016/j.cis.2018.05.007
- Ramanayaka S., Sarkar B., Cooray A.T., et al. // J. Hazard. Mater. 2020. V. 384. 121301. https://doi.org/10.1016/j.jhazmat.2019.121301
- Sadjadi S. // Appl. Clay Sci. 2020. V. 189. 105537. https://doi.org/10.1016/j.clay.2020.105537
- Атякшева Л.Ф., Касьянов И.А. // Современные молекулярные сита. 2021. Т. 3. № 2. С. 124. [Atyaksheva L.F., Kasyanov I.A. // Petroleum Chemistry 2021. V. 61. № 8. P. 932] https://doi.org/10.1134/S0965544121080119
- Zhai R., Zhang B., Wan Y., et al. // Chem. Eng. J. 2013. V. 214. P. 304. https://doi.org/10.1016/j.cej.2012.10.073
- Zhang Y., Cao H., Fei W., et al. // Sens. Actuators, B.. 2012. V. 162. P. 143. https://doi.org/10.1016/j.snb.2011.12.051
- Tully J., Yendluri R., Lvov Y. // Biomacromol. 2016. V. 17. P. 615. https://doi.org/10.1016/acs.biomac.5b01542
- Andrade J.D., Hlady V., Wei A.P. // Pure Appl. Chem. 1992. V. 64. № 11. P. 1777. http://doi.org/10.1351/pac199264111777
- Хохлова Т.Д. // Вестник Моск. ун-та. Серия 2. Химия. 2002. Т. 43. № 3. С. 147.
- Pasbakhsh P., Churchman G.J., Keeling J.L. // Appl. Clay Sci. 2013. V. 74. P. 47. https://doi.org/10.1016/j.clay.2012.06.014
- Tan D., Yuan P., Annabi-Bergaya F., et al. // Microporous Mesoporous Mater. 2013. V. 179. P. 89. https://doi.org/10.1016/j.micromeso.2013.05.007
- Yuan P., Southon P.D., Liu Z., et al. //J. Phys. Chem. C. 2008. V. 112. P. 15742. https://doi.org/10.1021/jp805657t
- Neal G.S., Smith M.E., Trigg M.B., Drennan J. // J. Mater. Chem. 1994. V. 4. №. 2. P. 245. https://doi.org/10.1039/JM9940400245
- Полторак О.М., Пряхин А.Н., Чухрай Е.С. // Вестн. Моск. ун-та. 1982. Сер. 2. Химия. Т. 23. № 6. С. 527.
- Бенько Е.М., Полторак О.М. // Вестн. Моск. ун-та. Сер. 2. Химия. 1988. Т. 29. № 3. С. 248.
- Jaber M., Lambert J.-F., Balme S. // Dev. Clay Sci. 2018. V. 9. P. 255. https://doi.org/10.1016/B978-0-08-102432-4.00008-1
- Хохлова Т.Д., Никитин Ю.С. // Вестн. Моск. ун-та. Сер. 2. Химия. 2005. Т. 46. № 4. С. 227.
- Эльтекова Н.А., Эльтеков А.Ю. // Физикохимия поверхности и защита материалов. 2010. Т. 46. № 1. С. 56. [Eltekova N.A., Eltekov A.Yu. //Prot. Met. Phys. Chem. Surf. 2010. V. 46. P. 60. https://doi.org/10.1134/S2070205110010089]
- Пилипенко О.С., Атякшева Л.Ф., Крючкова Е.В., Чухрай Е.С. // Журн. физ. химии. 2012. Т. 86. № 8. С. 1417. [Pilipenko O.S., Atyaksheva L.F., Kryuchkova E.V., Chukhrai E.S. // Rus. J. Phys. Chem. 2012. V. 86. P. 1301. https://doi.org/10.1134/S0036024412080109]
- Su T.J., Lu J.R., Thomas R.K., et al. // Langmuir. 1998. V. 4. P. 438. https://doi.org/10.1021/la970623z
- Zhang F., Skoda M.W.A., Jacobs R.M.J., et al. // J. Phys. Chem. B. 2007. V. 111. P. 251. https://doi.org/10.1021/jp0649955
- Carter D.C., Ho J.X. // Adv. Protein Chem. 1994. V. 45. P. 153. https://doi.org/10.1016/s0065-3233(08)60640-3
- Jachimska B., Tokarczyk K., Łapczyńska M., et al. // Colloids Surf. A: Physicochem. 2016. V. 489. P. 163. https://doi.org/10.1016/j.colsurfa.2015.10.033
- Атякшева Л.Ф., Добрякова И.В., Иванова И.И. и др. // Журн. физ. химии. 2012. Т. 86. № 3. С. 539. [Atyaksheva L.F., Dobryakova I.V., Ivanova I.I., et al. // Rus. J. Phys. Chem. 2012. V. 86. P. 468. https://doi.org/10.1134/S0036024412030041]
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 






