The Effect of Acidity of the Medium on the Structure Nile Red
- 作者: Popov N.V.1, Bogolitsyn K.G.1,2, Skrebets T.E.1, Mamatmurodov K.B.1
-
隶属关系:
- Northern (Arctic) Federal University Lomonosov Moscow State University
- The Federal Research Center for Integrated Studies N. P. Laverov Ural Branch of the Russian Academy of Sciences
- 期: 卷 99, 编号 8 (2025)
- 页面: 1179-1190
- 栏目: PHYSICAL CHEMISTRY OF SOLUTIONS
- ##submission.dateSubmitted##: 06.11.2025
- ##submission.datePublished##: 15.08.2025
- URL: https://ruspoj.com/0044-4537/article/view/695889
- DOI: https://doi.org/10.7868/S3034553725080076
- ID: 695889
如何引用文章
详细
The change in the structure of Nile red when treated with acids of different strength: acetic, formic and hydrochloric acids was studied by IR spectroscopy. In the IR spectra of the dye dried after treatment with formic and hydrochloric acids, the appearance of absorption spectra corresponding to shaft vibrations of N–H+-bonds of tertiary amines and O–H-bonds of hydroxyl groups was recorded. In the IR spectra of the dye dissolved in acetic and formic acids, the appearance of the absorption spectra of O–H-bonds of hydroxyl groups is predominantly traced. Thus, it was found that the most probably protonation centers in the molecule of Nile red are the amino group and carbonyl group. Analysis of UV-visible spectra of the dye in acetic and formic acid and in DMSO showed that in acetic acid Nile red probably exists mainly in the non-protonated form, and in stronger formic acid a significant part of its molecules is protonated, which is accompanied by a complication of the form of the spectrum.
作者简介
N. Popov
Northern (Arctic) Federal University Lomonosov Moscow State University
Email: s3019159@edu.narfu.ru
Arkhangelsk, Russia
K. Bogolitsyn
Northern (Arctic) Federal University Lomonosov Moscow State University; The Federal Research Center for Integrated Studies N. P. Laverov Ural Branch of the Russian Academy of Sciences
Email: k.bogolitsin@narfu.ru
Arkhangelsk, Russia; Arkhangelsk, Russia
T. Skrebets
Northern (Arctic) Federal University Lomonosov Moscow State UniversityArkhangelsk, Russia
Kh. Mamatmurodov
Northern (Arctic) Federal University Lomonosov Moscow State UniversityArkhangelsk, Russia
参考
- Deye J.F., Berger T.A., Anderson A.G. // Anal. Chem. 1990. V. 62. № 6. P. 615. DOI: https://doi.org/10.1021/ac00205a015
- Martinez V., Henary M. // Chem. 2016. V. 22. № 39. P. 13764. DOI: https://doi.org/10.1002/chem.201601570
- Guido C.A., Mennucci B., Jacquemin D., Adamo C. // Phys. Chem. Chem. Phys. 2010. V. 12. № 28. P. 8016. DOI: https://doi.org/10.1039/B927489H
- W. Ogihara, T. Aoyama, H. Ohno // Chem. Lett. 2004. V. 33. № 11. P. 1414. DOI: https://doi.org/10.1246/cl.2004.1414
- Zhang M., Zhao X., Tang S. et al. // J. of Mol. Struct. 2023. V. 1273. P. 134283. DOI: https://doi.org/10.1016/j.molstruc.2022.134283
- Dwamena A.K., Raynie D.E. // J. Chem. Eng. Data. 2020. V. 65. № 2. P. 640–646. DOI: https://doi.org/10.1021/acs.jced.9b00872
- Reichardt C. // Chem. rev. 1994. V. 94. № 8. P. 2319. DOI: https://doi.org/10.1021/cr00032a005
- Selivanov N.I., Samsonova L.G., Artyukhov V.Y., Kopylova T.N. // Rus. Phys. J. 2011. V. 54. № 5. P. 601. DOI: https://doi.org/10.1007/s11182-011-9658-4
- Millán D., González-Turen F., Perez-Recabarren J. // Int. J. Biol. Macromol. 2022. V. 211. P. 490. DOI: https://doi.org/10.1016/j.ijbiomac.2022.05.030
- Simamora A., Timotius K.H., Setiawan H. // Mol. 2024. V. 29. № . 9. P. 2093. DOI: https://doi.org/10.3390/molecules29092093
- Nieckarz R.J., Oomens J., Berden G. et al. // Phys. Chem. Chem. Phys. 2013. V. 15. № 14. P. 5049. DOI: https://doi.org/10.1039/C3CP00158J
- Smith B. // Spectr. 2021. V. 36. № 5. P. 14.
- Max J.J., Trudel M., Chapados C. // Appl. spectr. 1998. V. 52. № 2. P. 234. DOI: https://doi.org/10.1366/0003702981943293
- Nile red ATR-IR spectrum / Sigma-Aldrich // SpectraBase. URL: https://spectrabase.com/spectrum/2ojISFgE8Se
- Гордон А., Форд Р. Спутник химика: Физико-химические свойства, методики библиография. М.: Мир, 1976. 541 с.
- Сильверстейн Р., Вебстер Ф., Кимл Д. Спектрометрическая идентификация органических соединений. М.: БИНОМ. Лаборатория знаний, 2014. 557 с.
- Socrates, G. Infrared and Raman characteristic group frequencies: tables and charts. John Wiley & Sons, 2004. 347 p.
- Stužka V., Šimánek V., Stránský Z. // Spectrochim. Acta A: Molecular Spectroscopy. 1967. V. 23. № 7. P. 2175. DOI: https://doi.org/10.1016/0584-8539(67)80104-1
- Nile blue A ATR-IR spectrum / Sigma-Aldrich // SpectraBase. URL: https://spectrabase.com/spectrum/EuAWivLf5eO
- Lide D.R., Handbook of Chemistry and Physics: a Ready-reference Book of Chemical and Physical Data. 97th edition. CRC press, 2017. 2643 p.
- Trummal A., Lipping L., Kaljurand I. et al. // J. Phys. Chem. A. V. 120. № 20. P. 3663–3669. DOI: https://doi.org/10.1021/acs.jpca.6b02253
- Minò A., Cinelli G., Lope, F., Ambrosone L. // Appl. Sci. 2023. V. 13. № 1. P. 638. DOI: https://doi.org/10.3390/app13010638
- Преч Э., Бюльманн Ф., Аффольтер К. Определение строения органических соединений. М.: Мир; БИНОМ. Лаборатория знаний, 2006. 438 с.
- Берштейн И.Я., Каминский Ю.Л. Спектрофотометрический анализ в органической химии. Ленинград: Химия, 1986. 200 с.
- Райхардт К. Растворители и эффекты среды в органической химии. М.: Мир, 1991. 763 с.
补充文件



