Effect of Synthesis Conditions on the Thermoluminescence of LiMgPO4
- 作者: Gyrdasova O.I.1, Kalinkin M.O.1, Akulov D.A.1, Abashev R.M.1,2, Surdo A.I.1,2, Kellerman D.G.1
- 
							隶属关系: 
							- Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences
- Ural Federal University named after the first President of Russia B.N. Yeltsin
 
- 期: 卷 68, 编号 2 (2023)
- 页面: 277-282
- 栏目: НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ И НАНОМАТЕРИАЛЫ
- URL: https://ruspoj.com/0044-457X/article/view/665314
- DOI: https://doi.org/10.31857/S0044457X22601754
- EDN: https://elibrary.ru/LRLBUO
- ID: 665314
如何引用文章
详细
Lithium magnesium phosphate LiMgPO4 is one of the most promising materials for luminescence dosimetry. In this paper, we consider methods for the synthesis or additional processing of this material, such as microwave, hydrothermal, and flux techniques, as well as melting followed by quenching, which makes it possible to enhance its thermoluminescence by increasing the crystallinity of the samples and improving grain contacts. The best properties are shown by the LiMgPO4–Na2B4O7 composite.
作者简介
O. Gyrdasova
Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences
														Email: kellerman@ihim.uran.ru
				                					                																			                												                								620990, Yekaterinburg, Russia						
M. Kalinkin
Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences
														Email: kellerman@ihim.uran.ru
				                					                																			                												                								620990, Yekaterinburg, Russia						
D. Akulov
Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences
														Email: kellerman@ihim.uran.ru
				                					                																			                												                								620990, Yekaterinburg, Russia						
R. Abashev
Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences; Ural Federal University named after the first President of Russia B.N. Yeltsin
														Email: kellerman@ihim.uran.ru
				                					                																			                												                								620990, Yekaterinburg, Russia; 620002, Yekaterinburg, Russia						
A. Surdo
Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences; Ural Federal University named after the first President of Russia B.N. Yeltsin
														Email: kellerman@ihim.uran.ru
				                					                																			                												                								620990, Yekaterinburg, Russia; 620002, Yekaterinburg, Russia						
D. Kellerman
Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences
							编辑信件的主要联系方式.
							Email: kellerman@ihim.uran.ru
				                					                																			                												                								620990, Yekaterinburg, Russia						
参考
- Ivanov S.A., Stash A.I., Bush A.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 588. https://doi.org/10.1134/S0036023622050096
- Sidorov A.I., Kirpichenko D.A., Yurina U.V., Podsvirov O.A. // Glass Phys. Chem. 2021. V. 47. P.118. https://doi.org/10.1134/S1087659621020140
- Abdel Rahman R.O., Hung Y.T. // Water. 2020. V. 12. P. 19. https://doi.org/10.3390/w12010019
- Pyshkina M.D., Nikitenko V.O., Zhukovsky M.V., Eki-din A.A. // AIP Conf. Proc. 2019. V. 2174. P. 020158. https://doi.org/10.1063/1.5134309
- Noor N.M., Fadzil M.S.A., Ung N. et al. // Radiat. Phys. Chem. 2016. V. 126. P. 56. https://doi.org/10.1016/j.radphyschem.2016.05.001
- Rivera T. // Appl. Radiat. Isot. 2012. V. 71. P. 30. https://doi.org/10.1016/j.radphyschem.2016.05.001
- Sears D.W., Sears H., Sehlke A., Hughes S.S. // J. Volcanol. Geotherm. Res. 2018. V. 349. P. 74. https://doi.org/10.1016/j.jvolgeores.2017.09.022
- Miyahara M.M., Sugi E., Katoh T. et al. // Radiat. Phys. Chem. 2012. V. 81. P. 705. https://doi.org/10.1016/j.jvolgeores.2017.09.022
- Yukihara E.G., McKeever S.W.S. Optically Stimulated Luminescence: Fundamentals and Applications. Wiley, 2011.
- Mckeever S.W.S. Thermoluminescence of Solids. Cambridge University Press, 1985.
- Menon S.N., Singh A.K., Kadam S. et al. // J. Food Proc. Preserv. 2019. V. 43. P. 13891. https://doi.org/10.1111/jfpp.13891
- Menon S.N., Dhabekar B.S., Kadam S., Koul D.K. // Nucl. Instrum. Methods Phys. B. 2018. V. 436. P. 45. https://doi.org/10.1016/j.nimb.2018.08.052
- Guo J., Tang Q., Zhang C. et al. // J. Rare Earths. 2017. V. 35. P. 525. https://doi.org/10.1016/S1002-0721(17)60943-8
- Gieszczyk W., Bilski P., Kłosowski M. et al. // Radiat. Measur. 2018. V. 113. P. 14. https://doi.org/10.1016/j.radmeas.2018.03.007
- Menon S.N., Dhabekar B.S., Raja A., Chougaonkar M.P. // Radiat. Measur. 2012. V. 47. P. 236. https://doi.org/10.1016/j.radmeas.2011.12.013
- Palan C.B., Bajaj N.S., Soni A., Omanwar S.K. // Bull. Mater. Sci. 2016. V. 39. P. 1157. https://doi.org/10.1007/s12034-016-1261-4
- Chougaonkar M.P., Kumar M., Bhatt B.C. // Int. J. Lum. Appl. 2012. V. 2. P. 194.
- Kulig D., Gieszczyk W., Marczewska B. et al. // Radiat. Measur. 2017. V. 106. P. 94. https://doi.org/10.1016/j.radmeas.2017.04.004
- Kalinkin M.O., Abashev R.M., Zabolotskaya E.V. et al. // Mater. Res. Express. 2019. V. 6. P. 046206. https://doi.org/10.1088/2053-1591/aafd3e
- Kellerman D.G., Medvedeva N.I., Kalinkin M.O. et al. // J. Alloys Compd. 2018. V. 766. P. 626. https://doi.org/10.1016/j.jallcom.2018.06.328
- Modak P., Modak B. // Phys. Chem. Chem. Phys. 2020. V. 22. P. 16244. https://doi.org/10.1039/D0CP02425B
- Medvedeva N.I., Kellerman D.G., Kalinkin M.O. // Mater. Res. Express. 2019. V. 6. 106304. https://doi.org/10.1088/2053-1591/ab3882
- Wang D., Li L., Jiang J. et al. // J. Mater. Res. 2021. V. 36. P. 333. https://rdcu.be/cTWVM
- Su Y.K., Peng Y.M., Yang R.Y., Chen J.L. // Opt. Mater. 2012. V. 34. P. 1598. https://doi.org/10.1016/j.optmat.2012.03.019
- Agathopoulos S. // J. Ceram. Soc. Jpn. 2012. V. 120. P. 233. https://doi.org/10.2109/jcersj2.120.233
- Kalinkin M.O., Akulov D.A., Medvedeva N.I. et al. // Mater. Today Com. 2022. V. 31. P. 103346. https://doi.org/10.1016/j.mtcomm.2022.103346
- Mehrabi M., Zahedifar M., Hasanloo S. et al. // Radiat. Phys. Chem. 2022. V. 194. P. 110057. https://doi.org/10.1016/j.radphyschem.2022.110057
- Ozdemir A., Guckan V., Altunal V. et al. // J. Lumines. 2021. V. 230. P. 117761. https://doi.org/10.1016/j.jlumin.2020.117761
- Kutub A.A., Elmanhawaawy M.S., Babateen M.O. // Solid State Sci. Technol. 2007. V. 15. P. 191.
- Gieszczyk W., Bilski P., Mrozik A. et al. // Materials. 2020. V. 13. 2032. https://doi.org/10.3390/ma13092032
- Kellerman D.G., Kalinkin M.O., Tyutyunnik A.P. et al. // J. Alloys Compd. 2020. V. 846. 156242. https://doi.org/10.1016/j.jallcom.2020.156242
 
				
			 
						 
						 
						 
						 
					

 
  
  
  电邮这篇文章
			电邮这篇文章 
 开放存取
		                                开放存取 ##reader.subscriptionAccessGranted##
						##reader.subscriptionAccessGranted## 订阅或者付费存取
		                                							订阅或者付费存取
		                                					


