Structure and Unusual Magnetic Properties of Mg-Containing Solid Solutions Based on Y2FeTaO7

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Mg-containing solid solutions based on Y2FeTaO7 and formed by various mechanisms of heterovalent substitution were synthesized and had the following compositions: Y2Fe0.55Mg0.3Ta1.15O7, Y2Fe0.625Mg0.3Ta1.075O7, Y2Fe0.7Mg0.3TaO7, Y2Fe0.7Mg0.2Ta1.1O7, Y2Fe0.85Mg0.15TaO7, Y1.85Mg0.15Fe0.925Ta1.075O7, and Y1.85Mg0.15FeTaO7. It was shown that all synthesized solid solutions have a pyrochlore-like layered structure (space group P3121), in which Fe3+ ions are distributed over three structural positions. The magnetic properties of these solid solutions are due to the presence of a small ferromagnetic component in a predominantly antiferromagnetic system and characterize a ferrimagnet or a canted antiferromagnet with the Néel transition at the Néel temperature TN above room temperature. According to the data of magnetic measurements, two magnetic phase transitions to the ordered phase occur in all the studied samples. Along with the TN transition, in weak magnetic fields and below TN, there is a second transition, which is most likely due to a spin reorientation of the Morin type. The existence of magnetic ordering at room temperature in one magnetic sublattice or an internal magnetic field (Hin) was confirmed by Mössbauer spectroscopy.

作者简介

O. Ellert

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: anna_egorysheva@rambler.ru
119991, Moscow, Russia

E. Popova

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: anna_egorysheva@rambler.ru
119991, Moscow, Russia

D. Kirdyankin

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: anna_egorysheva@rambler.ru
119991, Moscow, Russia

V. Imshennik

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: anna_egorysheva@rambler.ru
119991, Moscow, Russia

E. Kulikova

National Research Center “Kurchatov Institute”

Email: anna_egorysheva@rambler.ru
123182, Moscow, Russia

A. Egorysheva

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: anna_egorysheva@rambler.ru
119991, Moscow, Russia

参考

  1. Dzyaloshinsky I. // J. Phys. Chem. Solids. 1958. V. 4. P. 241. https://doi.org/10.1016/0022-3697(58)90076-3
  2. Matarrese L.M., Stout J.W. // Phys. Rev. 1954. V. 94. P. 1792. https://doi.org/10.1103/PhysRev.94.1792
  3. Боровик-Романов А.С., Орлова М.П. // ЖЭТФ. 1956. Т. 31. С. 579.
  4. Yuan X., Sun Y., Xu M. // J. Solid State Chem. 2012. V. 196. P. 362. https://doi.org/10.1016/j.jssc.2012.06.042
  5. Bernal F.L.M., Gonano B., Lundvall F. et al. // Phys. Rev. Mater. 2020. V. 4. P. 114412. https://doi.org/10.1103/PhysRevMaterials.4.114412
  6. Eibschütz M., Shtrikman S., Treves D. // Phys. Rev. 1967. V. 156. P. 562. https://doi.org/10.1103/PhysRev.156.562
  7. Dmitrienko V.E., Ovchinnikova E.N., Collins S.P. et al. // Nat. Phys. 2014. V. 10. P. 202. https://doi.org/10.1038/nphys2859
  8. Москвин А.С. // ЖЭТФ. 2021. Т. 159. № 4. С. 607.
  9. Yamaguchi T. // J. Phys. Chem. Solids. 1974. V. 35. P. 479. https://doi.org/10.1016/S0022-3697(74)80003-X
  10. Kurtzig A.J., Wolfe R., LeCraw R.C. et al. // Appl. Phys. Lett. 1969. V. 14. P. 350. https://doi.org/10.1063/1.1652682
  11. Lee J.-H., Jeong Y.K., Park J.H. et al. // Phys. Rev. Lett. 2011. V. 107. P. 117201. https://doi.org/10.1103/PhysRevLett.107.117201
  12. Klepov V.V., Pace K.A., Berseneva A.A. et al. // J. Am. Chem. Soc. 2021. V. 143. P. 11554. https://doi.org/10.1021/jacs.1c04245
  13. Zhu W.K., Lu C.-K., Tong W. et al. // Phys. Rev. B. 2015. V. 91. P. 144408. https://doi.org/10.1103/PhysRevB.91.144408
  14. Egorysheva A.V., Ellert O.G., Popova E.F. et al. // Mendeleev Commun. 2023 (в печати).
  15. Pressley L.A., Torrejon A., Phelan W.A. et al. // Inorg. Chem. 2020. V. 59. P. 17251. https://doi.org/10.1021/acs.inorgchem.0c02479
  16. Егорышева А.В., Попова Е.Ф., Тюрин А.В. и др. // Журн. неорган. химии. 2019. Т. 64. № 11. С. 1154.
  17. Егорышева А.В., Эллерт О.Г., Попова Е.Ф. и др. // Журн. неорган. химии. 2022. Т. 67. № 11. С. 1515.
  18. Qian F.Z., Jiang J.S., Jiang D.M. et al. // J. Phys. D: Appl. Phys. 2010. V. 43. P. 025403. https://doi.org/10.1088/0022-3727/43/2/025403
  19. Kothari D., Reddy V.R., Gupta A. et al. // J. Phys.: Condens. Matter. 2010. V. 22. P. 356001. https://doi.org/10.1088/0953-8984/22/35/356001
  20. Ellert O.G., Egorysheva A.V. // Pyrochlore Ceramics. Properties, Processing, and Applications. Amsterdam: Elsevier, 2022. https://doi.org/10.1016/B978-0-323-90483-4.00009-X
  21. Morin F.J. // Phys. Rev. 1950. V. 78. P. 819. https://doi.org//10.1103/PhysRev.78.819.2
  22. Tsymbal L.T., Kamenev V.I., Bazaliy Y.B. et al. // Phys. Rev. B. 2005. V. 72. P. 052413. https://doi.org/10.1103/PhysRevB.72.052413
  23. Pinto H., Shachar G., Shaked H. et al. // Phys. Rev. B. 1971. V. 3. P. 3861. https://doi.org/10.1103/PhysRevB.3.3861
  24. Doroshev V.D., Kharnachev A.S., Kovtun N.M. et al. // Phys. Stat. Sol. B. 1972. V. 51. P. 31. https://doi.org/10.1002/pssb.2220510150
  25. Bertaut I.F. // Acta Crystallogr. A. 1968. V. 24. P. 217. https://doi.org/10.1107/S0567739468000306
  26. Bhattacharjee S., Senyshyn A., Fuess H. et al. // Phys. Rev. B. 2013. V. 87. P. 054417. https://doi.org/10.1103/PhysRevB.87.054417

补充文件

附件文件
动作
1. JATS XML
2.

下载 (196KB)
3.

下载 (324KB)
4.

下载 (202KB)
5.

下载 (208KB)
6.

下载 (315KB)
7.

下载 (327KB)
8.

下载 (207KB)

版权所有 © О.Г. Эллерт, Е.Ф. Попова, Д.И. Кирдянкин, В.К. Имшенник, Е.С. Куликова, А.В. Егорышева, 2023