ON 24TH-ORDER MULTI-OPERATOR APPROXIMATIONS IN SCHEMES FOR EQUATIONS WITH CONVECTIVE TERMS
- Авторлар: Tolstykh A.I1
-
Мекемелер:
- Federal Research Center Computer Science and Control, RAS
- Шығарылым: Том 64, № 9 (2024)
- Беттер: 1589-1603
- Бөлім: General numerical methods
- URL: https://ruspoj.com/0044-4669/article/view/665186
- DOI: https://doi.org/10.31857/S0044466924090024
- EDN: https://elibrary.ru/WLDQMD
- ID: 665186
Дәйексөз келтіру
Аннотация
As part of the study of multi-operator approximations and schemes using economically reversible two-point operators, approximations of the 24th order of the first derivatives in problems with convective terms are considered. The main attention is paid to the spectral properties characterizing their high accuracy and resolution. To illustrate these properties, examples of solving model problems are given. The possibilities of using such multi-operator schemes in the case of discontinuous solutions are considered.
Авторлар туралы
A. Tolstykh
Federal Research Center Computer Science and Control, RAS
Email: tol@ccas.ru
Moscow, Russia
Әдебиет тізімі
- Tolstykh A.I. Multioperator high-order compact upwind methods for CFD parallel calculations, in: D.R. Emerson et al. (Eds.), Parallel Computational Fluid Dynamics, Amsterdam: Elsevier. 1998. P 383—390.
- Толстых А.И. Компактные и мультиоператорные аппроксимации высокой точности для уравнений в частных производных. М.: Наука, 2015.
- Tolstykh A.I., Shirobokov D.A. Fast calculations of screech using highly accurate multioperators-based schemes // J. Appl. Acoustics. 2013. V 74. P. 102-109.
- Tolstykh A. I. Development of arbitrary-order multioperators-based schemes for parallel calculations.2. Families of compact approximations with two-diagonal inversions and related multioperators // J. Comput. Phys. 2008. V. 227. P. 2922-2940.
- Толстых А.И. О семействах высокоточных мультиоператорных аппроксимаций производных, использующих двухточечные операторы // Докл. АН. 2017. Т. 473. № 12, C. 138-141.
- Tolstykh A.I., Shirobokov D.A. Using 16-th Order Multioperators-Based Scheme for Supercomputer Simulation of the Initial Stage of Laminar-Turbulent Transitions // Communications in Computer and Information Science, Springer. 2021, 1510 CCIS. P. 270-282.
- Lipavskii I. Konshin. Parallel Implementation of Multioperators-Based Scheme of the 16-th Order for Three Dimensional Calculation of the Jet Flows. In: Proc. of International Conference “Russian Supercomputing Days 2022”, September 26-27, 2022, Moscow: MSU Publishing House. P. 1-13.
- Tolstykh A.I., Shirobokov D.A. Observing production and growth of Tollmien-Schlichting waves in subsonic flat plate boundary layer via exciters-free high fidelity numerical simulation //J. of Turbulence. 2020. V 21. № 11. P 632—649.
- Tam C.K.W. Problem 1-aliasing, In: Fourth Computational Aeroacoustics (CAA) Workshop on benchmark problems, 2004, NASA/CP-2004-2159.
- Adams N.A., Shariff K. A high resolution Compact-ENO schemes for shock-turbulence interaction problems // J. Comput. Phys. 1996. V 127. P. 27-51.
- Sod G.A. A survey of several finite difference schemes for hyperbolic conservation laws // J. Comput. Phys. 1978. V. 27. P. 1-31.
- Liska R., Wendroff B. Comparison of several difference schemes on1D and 2D test problems for the Euler equations // SIAM J. Sci. Comput. 2003. V. 26. P. 995-1017.
- Zalesac S.T. Fully multidimensionalflux-corrected transport algorithms for fluids // J.Comput. Phys. 1979. V. 31. P. 335-362.
- Boris J.P., Book D.L. Flux-Corrected Transport. I. SHASTA, a fluid transport algorithm that works // J. Comput. Phys. 1973, V. 11. P. 38-69.
- Shu C.W., Osher S. Efficient implementation of essentially non-oscillatory shock capturing schemes II//J. Comput. Phys. 1989, V. 83. P. 32-78.
- Balsara D.S., Shu C.-W. Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy // J. Comput. Phys. 2020. V. 160 P. 405-452.
Қосымша файлдар
