О схеме Русанова третьего порядка точности для моделирования плазменных колебаний

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Для моделирования нерелятивистских колебаний холодной плазмы предложена модификация известной схемы Русанова, имеющей третий порядок точности. Ранее для подобных расчетов в эйлеровых переменных были известны только схемы первого и второго порядков точности. Для тестовой задачи с гладким решением проведено исследование погрешностей построенной схемы, а также – сравнение с погрешностями схемы Мак-Кормака. Для задачи о свободных плазменных колебаниях, инициированных коротким мощным лазерным импульсом, приведены результаты численных экспериментов по сохранению энергии и дополнительной функции для обеих схем, а также – по точности электронной плотности в центре области. Сделан вывод о теоретическом превосходстве схемы Русанова, хотя для практических вычислений более приспособлена схема Мак-Кормака. В первую очередь это касается расчетов “долгоживущих” процессов и колебаний холодной плазмы, близких к реальным. Теоретическое исследование аппроксимации и устойчивости вместе с экспериментальным наблюдением за количественными характеристиками погрешности для наиболее чувствительных величин существенно повышает достоверность вычислений. Библ. 20. Фиг. 3. Табл. 4.

Об авторах

Е. В. Чижонков

МГУ им. М.В. Ломоносова

Автор, ответственный за переписку.
Email: chizhonk@mech.math.msu.su
Россия, 119899, Москва, Ленинские горы

Список литературы

  1. Куликовский А.Г., Погорелов Н.В., Семенов А.Ю. Математические вопросы численного решения гиперболических систем уравнений. 2-е изд., испр. и доп. М.: Физматлит, 2012. С. 46–100.
  2. Чижонков Е.В. Математические аспекты моделирования колебаний и кильватерных волн в плазме. М.: Физматлит, 2018. С. 12–240.
  3. Чижонков Е.В. О схемах второго порядка точности для моделирования плазменных колебаний // Вычисл. методы и программирование. 2020. Т. 21. С. 115.
  4. Русанов В.В. Разностные схемы третьего порядка точности для сквозного счета разрывных решений // Докл. АН СССР. 1968. Т. 180. № 6. С. 1303.
  5. Rusanov V.V. On difference schemes of third order of accuracy for non-linear hyperbolic systems // J. Comput. Phys. 1970. V. 5. № 3. P. 507.
  6. Burstein S.Z., Mirin A.A. Third order difference methods for hyperbolic equations // J. Comput. Phys. 1970. V. 5. № 3. P. 547.
  7. Бахвалов Н.С., Корнев А.А., Чижонков Е.В. Численные методы. Решения задач и упражнения. Серия Классический университетский учебник. Учеб. пособие для вузов. 2-е изд., испр. и дополн. М.: Лаборатория знаний, 2016. С. 95–96.
  8. Александров А.Ф., Богданкевич Л.С., Рухадзе А.А. Основы электродинамики плазмы. М.: Высш. школа, 1988. С. 102–113.
  9. Гинзбург В.Л., Рухадзе А.А. Волны в магнитоактивной плазме. М.: Наука, 1975. С. 112–124.
  10. Davidson R.C. Methods in nonlinear plasma theory. New York: Academic Press, 1972. P. 33–53.
  11. Dafermos C.M. Hyperbolic Conservation Laws in Continuum Physics. The 4th Edition, Berlin-Heidelberg: Springer, 2016. P. 221–225.
  12. Engelberg S., Liu H., Tadmor E. Critical Thresholds in Euler – Poisson Equations // Indiana University Math. J. 2001. V. 50. P. 109.
  13. Розанова О.С., Чижонков Е.В. О существовании глобального решения одной гиперболической задачи // Докл. АН. Математика, информатика, процессы управления. 2020. Т. 492. № 1. С. 97.
  14. Rozanova O.S., Chizhonkov E.V. On the conditions for the breaking of oscillations in a cold plasma // Z. Angew. Math. Phys. 2021. V. 72. № 13. P. 1.
  15. Фролов А.А., Чижонков Е.В. О применении закона сохранения энергии в модели холодной плазмы // Ж. вычисл. матем. и матем. физ. 2020. Т. 60. № 3. С. 503.
  16. Розанова О.С., Чижонков Е.В. Об аналитическом и численном решении одномерных уравнений холодной плазмы // Ж. вычисл. матем. и матем. физ. 2021. Т. 61. № 9. С. 1508.
  17. MacCormack R.W. The effect of viscosity in hypervelocity impact cratering // J. Spacecr. Rockets. 2003. V. 40. № 5. P. 757.
  18. Шокин Ю.И., Яненко Н.Н. Метод дифференциального приближения. Применение к газовой динамике. Новосибирск: Наука, 1985. С. 251–252.
  19. Андерсон Д., Таннехилл Дж., Плетчер Р. Вычислительная гидромеханика и теплообмен. Т. 1. М.: Мир, 1990. С. 179–180.
  20. Sheppard C.J.R. Cylindrical lenses – focusing and imaging: a review [Invited] // Applied Optics. 2013. V. 52. № 4. P. 538.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2.

Скачать (55KB)
3.

Скачать (59KB)
4.

Скачать (58KB)

© Е.В. Чижонков, 2023