Influence of weather conditions on the activity of the Common vole (Microtus arvalis Pallas, 1778, Cricetidae, Rodentia)
- Autores: Tolkachev O.V.1, Maklakov K.V.1
-
Afiliações:
- Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences
- Edição: Volume 104, Nº 6 (2025)
- Páginas: 101-107
- Seção: ARTICLES
- URL: https://ruspoj.com/0044-5134/article/view/687216
- DOI: https://doi.org/10.31857/S0044513425060093
- EDN: https://elibrary.ru/avzooo
- ID: 687216
Citar
Resumo
A detailed understanding of how weather influences the behavior of small mammals enhances our knowledge of species ecology and improves the interpretation of field study results. While the effect of weather on small mammal activity has long been recognized, research findings remain inconsistent, varying by species, season, and habitat. In the case of the Common vole, only a limited number of studies have examined this relationship, often focusing on a narrow range of weather parameters and yielding contradictory conclusions. This study aimed to investigate the influence of multiple weather factors on the activity (mainly nocturnal) of common voles in an open habitat during summer. To gather a sufficiently large dataset, an original technique for assessing small mammal activity by the footprint presence in systematically placed tracking devices was used. The study was conducted over one month across a 9-hectare area, where 961 tracking stations – each consisting of a plastic bottle, a tracking cartridge with waterproof ink, and bait – were deployed. The Common vole was confirmed as the dominant small mammal species in the study area through intensive trapping in the central part of the experimental plot. Over 10,571 device inspections and 6,910 vole visits were recorded. Weather data were recorded using an automatic weather station. The results demonstrated that wind, rain, higher temperatures, and increased humidity all contributed to greater activity in common voles. In contrast, elevated illumination levels reduced movement intensity. The methodology proved effective for obtaining large datasets to assess small mammal activity in monospecific communities.
Palavras-chave
Texto integral

Sobre autores
O. Tolkachev
Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences
Autor responsável pela correspondência
Email: olt@mail.ru
Rússia, 620144, Yekaterinburg, st. 8 Marta, 202
K. Maklakov
Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences
Email: olt@mail.ru
Rússia, 620144, Yekaterinburg, st. 8 Marta, 202
Bibliografia
- Башенина Н.В., 1962. Экология обыкновенной полевки и некоторые черты ее географической изменчивости. М.: МГУ. 308 с.
- Большаков В.Н., Баженов А.В., 1988. Радионуклидные методы мечения в популяционной экологии млекопитающих. М.: Наука. 157 с.
- Ердаков Л.Н., Николаев А.С., Фолитарек С.С., 2001. Активность и миграции // Водяная полевка: Образ вида. М.: Наука. С. 290–304.
- Ивантер Э.В., Макаров А.М., 2001. Территориальная экология землероек-бурозубок. Петрозаводск. 271 с.
- Карасева Е.В., Телицына А.Ю., Жигальский О.А., 2008. Методы изучения грызунов в полевых условиях. М.: Издательство ЛКИ. 416 с.
- Литвин В.Ю., Прошина Т.Ф., 1971. Разработка методик и опыт изучения контактов полевок-экономок с зараженными точками территории в природном очаге лептоспирозов // Зоологический журнал. T. 50. № 4. C. 572–581.
- Малкова Е.А., Толкачев О.В., Маклаков К.В., 2024. Нейросетевая идентификация по отпечаткам лап – новый подход к неинвазивной оценке видового разнообразия мелких млекопитающих // 80 лет экологической науке на Урале: материалы всероссийской научной конференции с международным участием, посвященной 80-летию Института экологии растений и животных УрО РАН, г. Екатеринбург, 11–15 ноября 2024 г. С. 140–141.
- Марвин М.Я., Орлова С.А., 1951. К вопросу о познании фауны мышевидных грызунов Карело-Финской ССР // Известия карело-финского филиала Академии наук СССР. № 3. С. 101–118.
- Наумов Н.П., 1948. Очерки сравнительной экологии грызунов. М.: Изд-во академии наук СССР. 204 с.
- Николаев А.С., Бушуева О.А., 1977. Сравнение гнездовой активности ушастой совы (Asio otus L.) с подвижностью мышевидных грызунов // Управление поведением животных. М.: Наука. С. 216–217.
- Николаев А.С., Чертова О.А., 1965. Влияние погодных условий на подвижность водяной крысы // Животный мир Барабы. Новосибирск: СО АН СССР. С. 70–72.
- Николаев А.С., Лузина Н.В., Панов В.В., 1977а. Зашумленность биотопов и ее влияние на активность пернатых хищников и мышевидных грызунов // Эколого-физиологические исследования в природе и эксперименте. Фрунзе: “Ылым”. С. 55–56.
- Николаев А.С., Панов В.В., Лузина Н.В., 1977б. Использование методик-и сплошной записи поведения животных для сравнительного анализа активности // Эколого-физиологические исследования в природе и эксперименте. Фрунзе: “Ылым”. С. 54–55.
- Фолитарек С.С., Максимов А.А., 1959. Сезонные кочевки, подвижность и активность водяной крысы // Водяная крыса и борьба с ней в западной Сибири. Новосибирск: Новосибирское кн. изд-во. 476 с.
- Ялковская Л.Э., Чепраков М.И., Ракитин С.Б., Полявина О.В., 2017. Местообитания видов-двойников группы “arvalis” (Microtus, Arvicolinae, Rodentia) на территории крупных городов среднего Урала // Зоологический журнал. Т. 96. № 6. С. 711–719.
- Barton K., 2020. MuMIn: Multi-Model Inference. R package version 1.43.17. https://CRAN.R-project.org/package=MuMIn
- Baulmer W., 1975. Activity of Some Small Mammals in the Field // Acta Theriologica. V. 20. P. 365–377.
- Bider J.R., 1968. Animal Activity in Uncontrolled Terrestrial Communities as Determined by a Sand Transect Technique // Ecological Monographs. V. 38. № 4. P. 269–308.
- Blair W.F., 1951. Population structure, social behavior, and environmental relations in a natural population of the beach mouse (Peromyscus polionotus leucocephalus) // Contributions from the laboratory of vertebrate biology university of Michigan. № 48. P. 1–47.
- Burnham K.P., Anderson D.R., 2002. Model Selection and multimodel inference – a practical information-thoretic approach. New York: Springer Science + Business Media. 488 p.
- Clarke J.A., 1983. Moonlight’s influence on predator/prey interactions between short-eared owls (Asio flammeus) and deermice (Peromyscus maniculatus) // Behav. Ecol. Sociobiol. V. 13. P. 205–209.
- Evans F.C., 1942. Studies of a small mammal population in Bagley wood, Berkshire // Journal of animal ecology. V. 11. № 2. P. 182–197.
- Fanson B.G., 2010. Effect of direct and indirect cues of predation risk on the foraging behavior of the White-footed mouse (Peromyscus leucopus) // Northeastern naturalist. V. 17. № 1. P. 19–28.
- Gillies C.A, Williams D., 2013. DOC tracking tunnel guide v2.5.2: Using tracking tunnels to monitor rodents and mustelids. Department of Conservation, Science & Capability Group, Hamilton, New Zealand. 14 p.
- Halle S., 1995. Effect of extrinsic factors on activity of Root voles, Microtus oeconomus // Journal of mammalogy. V. 76. № 1. P. 88–99.
- Justice K.E., 1961. A new method for measuring home ranges of small mammals // Journal of Mammalogy. V. 42. № 4. С. 462–470.
- Jensen S.P., Honess P., 1995. The influence of moonlight on vegetation height preference and trappability of small mammals // Mammalia. V. 59. № 1. P. 35–42.
- King C.M., Edgar R.L., 1977. Techniques for trapping and tracking stoats (Mustela erminea); a review, and a new system // New Zealand Journal of Zoology. V. 4. № 2. P. 193–212.
- Kotler B.P., 1984. Risk of predation and the structure of desert rodent communities // Ecology. V. 65. № 3. P. 689–701.
- Kryštufek B., Shenbrot G.I., 2022. Voles and Lemmings (Arvicolinae) of the Palaearctic Region. Maribor: University Press. 437 p.
- Lehmann U., Sommersberg C.W., 1980. Activity patterns of the Common vole, Microtus arvalis – automatic recording of behaviour in an enclosure // Oecologia. V. 47. P. 61–75.
- Maestri R., Marinho J.R., 2014. Singing in the rain. Rainfall and moonlight affect daily activity patterns of rodents in a Neotropical forest // Acta Theriologica. V. 59. P. 427–433.
- Marten G.G., 1973. Time patterns of Peromyscus activity and their correlations with weather // Journal of mammalogy. V. 54. № 1. P 169–188.
- O’Farrell M.J., 1974. Seasonal activity patterns of rodents in a sagebrush community // Journal of mammalogy. V. 55. № 4. P. 809–823.
- Palma A.R.T., Gurgel-Goncalves R., 2007. Morphometric identification of small mammal footprints from ink tracking tunnels in the Brazilian Cerrado // Revista Brasileira de zoologia. V. 24. № 2. P. 333–343.
- Pasquet A., Torre I., Diaz M., 2023. Indirect human influences in fear landscapes: varying effects of moonlight on small mammal activity along man-made gradients of vegetation structure // Life. V. 13. 681.
- Prugh L.R., Golden C.D., 2014. Does moonlight increase predation risk? Meta-analysis reveals divergent responses of nocturnal mammals to lunar cycles // Journal of animal ecology. V. 83. P. 504–514.
- R Core Team, 2024. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
- Rizkalla C.E., Swihart R.K., 2007. Explaining movement decisions of forest rodents in fragmented landscapes // Biological conservation. V. 140. P. 339–348.
- Vickery W.L., Bider J.R., 1981. The influence of weather on rodent activity // Journal of mammalogy. V. 62. № 1. P. 140–145.
- Vickery W.L., Rivest D., 1992. The influence of weather on habitat use by small mammals // Ecography. V. 15. P. 205–211.
- Wrobel A., Bogdziewicz M., 2015. It is raining mice and voles: which weather conditions influence the activity of Apodemus flavicollis and Myodes glareolus? // European journal of wildlife research. V. 61. P. 475–478.
Arquivos suplementares
