Discovery and Identification of Plant Regulatory Peptides

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

Plant regulatory peptides represent a novel class of signaling molecules that play a central role in the regulation of plant growth, development, and stress responses. Owing to their high biological activity at low concentrations, they are considered promising biostimulants for environmentally sustainable agriculture. This review summarizes key theoretical approaches and experimental methods used for the discovery and identification of these peptides, including mass spectrometry, bioinformatics, bioassays, and in silico screening. An overview is provided of the major peptides identified to date – such as systemin, PSK, PSY, AtPep1, CLV3, TDIF, CEP, and CIF – along with the methods used for their isolation, chemical synthesis, and functional validation. Special attention is given to model systems based on cell cultures and seedlings, which are commonly employed to screen peptide activity, as well as to strategies for identifying their corresponding receptors. The review highlights the critical role of bioassays as a final and indispensable stage in peptide discovery pipelines, enabling the functional evaluation of both identified and putative peptides.

Авторлар туралы

A. Skripnikov

Lomonosov Moscow State University, Biological Faculty

Email: deptbioorg@gmail.com
Moscow, Russia

E. Vorobeva

Lomonosov Moscow State University, Biological Faculty

Moscow, Russia

M. Taliansky

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Moscow, Russia

N. Kalinina

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Moscow, Russia

Әдебиет тізімі

  1. Tavormina P., De Coninck B., Nikonorova N., De Smet I., Cammue B.P.A. // Plant Cell. 2015. V. 27. P. 2095–2118. https://doi.org/10.1105/tpc.15.00440
  2. Matsubayashi Y. // Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci. 2018. V. 94. P. 59–74. https://doi.org/10.2183/pjab.94.006
  3. Hellinger R., Sigurdsson A., Wu W., Romanova E.V., Li L., Sweedler J.V., Süssmuth R.D., Gruber C.W. // Nat. Rev. Methods Prim. 2023. V. 3. P. 1–21. https://doi.org/10.1038/s43586-023-00205-2
  4. Yan C.-L., Guan K.-X., Lin H., Feng T., Meng J.-G. // Front. Plant Sci. 2025. V. 16. P. 1506617. https://doi.org/10.3389/fpls.2025.1506617
  5. Zhang Y.-M., Ye D.-X., Liu Y., Zhang X.-Y., Zhou Y.-L., Zhang L., Yang X.-L. // Adv. Agrochem. 2023. V. 2. P. 58–78. https://doi.org/10.1016/j.aac.2023.01.003
  6. Zhang Z., Han H., Zhao J., Liu Z., Deng L., Wu L., Niu J., Guo Y., Wang, G., Gou, X., Li C., Li C., Li C.–M. // Mol. Hortic. 2025. V. 5. P. 7. https://doi.org/10.1186/s43897-024-00134-y
  7. Ruiz C., Nadal A., Montesinos E., Pla M. // Mol. Plant Pathol. 2018. V. 19. P. 418–431. https://doi.org/10.1111/mpp.12534
  8. Pearce G., Strydom D., Johnson S., Ryan C.A. // Science. 1991. V. 253. P. 895–897. https://doi.org/10.1126/science.253.5022.895
  9. Matsubayashi Y., Sakagami Y. // Proc. Natl. Acad. Sci. 1996. V. 93. P. 7623–7627. https://doi.org/10.1073/pnas.93.15.7623
  10. Amano Y., Tsubouchi H., Shinohara H., Ogawa M., Matsubayashi Y. // Proc. Natl. Acad. Sci. USA. 2007. V. 104. P. 18333–18338. https://doi.org/10.1073/pnas.0706403104
  11. Pearce G., Moura D.S., Stratmann J., Ryan C.A. // Nature. 2001. V. 411. P. 817–820. https://doi.org/10.1038/35081107
  12. Pearce G., Moura D.S., Stratmann J., Ryan C.A. // Proc. Natl. Acad. Sci. USA. 2001. V. 98. P. 12843– 12847. https://doi.org/10.1073/pnas.201416998
  13. Huffaker A., Pearce G., Ryan C.A. // Proc. Natl. Acad. Sci. USA. 2006. V. 103. P. 10098–10103. https://doi.org/10.1073/pnas.0603727103
  14. Ito Y., Nakanomyo I., Motose H., Iwamoto K., Sawa S., Dohmae N., Fukuda H. // Science. 2006. V. 313. P. 842– 845. https://doi.org/10.1126/science.1128436
  15. Stührwohldt N., Bühler E., Sauter M., Schaller A. // J. Exp. Bot. 2021. V. 72. P. 3427–3440. https://doi.org/10.1093/jxb/erab017
  16. Tost A.S., Kristensen A., Olsen L.I., Axelsen K.B., Fuglsang A.T. // Genes (Basel). 2021. V. 12. P. 218. https://doi.org/10.3390/genes12020218
  17. Ryan C.A., Pearce G. // Proc. Natl. Acad. Sci. USA. 2003. V. 100. P. 14577–14580. https://doi.org/10.1073/pnas.1934788100
  18. Pastor V., Sánchez-Bel P., Gamir J., Pozo M.J., Flors V. // Plant Methods. 2018. V. 14. P. 33. https://doi.org/10.1186/s13007-018-0301-z
  19. Coppola M., Di Lelio I., Romanelli A., Gualtieri L., Molisso D., Ruocco M., Avitabile C., Natale R., Cascone P., Guerrieri E., Pennacchio F., Rao R. // Plants (Basel). 2019. V. 8. P. 395. https://doi.org/10.3390/plants8100395
  20. Zhang H., Zhang H., Lin J. // New Phytol. 2020. V. 226. P. 1573–1582. https://doi.org/10.1111/nph.16495
  21. Cirillo V., Molisso D., Aprile A.M., Maggio A., Rao R. // Environ. Exp. Bot. 2022. V. 199. P. 104865. https://doi.org/10.1016/j.envexpbot.2022.104865
  22. Yan J., Xin P., Cheng S., Chu J. // Plant Commun. 2023. V. 4. P. 100638. https://doi.org/10.1016/j.xplc.2023.100638
  23. Wang L., Einig E., Almeida-Trapp M., Albert M., Fliegmann J., Mithöfer A., Kalbacher H., Felix G. // Nat. Plants. 2018. V. 4. P. 152–156. https://doi.org/10.1038/s41477-018-0106-0
  24. Chen Y.L., Fan K.T., Hung S.C., Chen Y.R. // New Phytol. 2020. V. 225. P. 2267–2282.2020. https://doi.org/10.1111/nph.16241
  25. Huffaker A., Ryan C.A. // Proc. Natl. Acad. Sci. USA. 2007. V. 104. P. 10732–10736. https://doi.org/10.1073/pnas.0703343104
  26. Huffaker A., Pearce G., Veyrat N., Erb M., Turlings T.C.J., Sartor R., Shen Z., Briggs S.P., Vaughan M.M., Alborn H.T., Teal P.E.A., Schmelz E.A. // Proc. Natl. Acad. Sci. USA. 2013. V. 110. P. 5707– 5712. https://doi.org/10.1073/pnas.1214668110
  27. Bartels S., Lori M., Mbengue M., van Verk M., Klauser D., Hander T., Böni R., Robatzek S., Boller T. // J. Exp. Bot. 2013. V. 64. P. 5309–5321. https://doi.org/10.1093/jxb/ert330
  28. Ruiz C., Nadal A., Foix L., Montesinos L., Montesinos E., Pla M. // BMC Genet. 2018. V. 19. P. 11. https://doi.org/10.1186/s12863-017-0593-4
  29. Lee M.W., Huffaker A., Crippen D., Robbins R.T., Goggin F.L. // Mol. Plant Pathol. 2017. V. 19. P. 858– 869. https://doi.org/10.1111/mpp.12570
  30. Zelman A.K., Berkowitz G.A. // Plants. 2023. V. 12. P. 2856. https://doi.org/10.3390/plants12152856
  31. Pearce G., Yamaguchi Y., Munske G., Ryan C.A. // Peptides. 2010. V. 31. P. 1973–1977. https://doi.org/10.1016/j.peptides.2010.08.012
  32. Abarca A., Franck C.M., Zipfel C. // Plant Physiol. 2021. V. 187. P. 996–1010. https://doi.org/10.1093/plphys/kiab308
  33. Fletcher J.C., Brand U., Running M.P., Simon R., Meyerowitz E.M. // Science. 1999. V. 283. P. 1911– 1914. https://doi.org/10.1126/science.283.5409.1911
  34. Fletcher J.C. // Trends Plant Sci. 2020. V. 25. P. 1005– 1016. https://doi.org/10.1016/j.tplants.2020.04.014
  35. Cock J.M., McCormick S. // Plant Physiol. 2001. V. 126. P. 939–942. https://doi.org/10.1104/pp.126.3.939
  36. Kondo T., Sawa S., Kinoshita A., Mizuno S., Kakimoto T., Fukuda H., Sakagami Y. // Science. 2006. V. 313. P. 845–848. https://doi.org/10.1126/science.1128439
  37. Hagelthorn L., Fletcher J.C. // Front. Plant Sci. 2023. V. 14. https://doi.org/10.3389/fpls.2023.1240342
  38. Ohyama K., Ogawa M., Matsubayashi Y. // Plant J. 2008. V. 55. P. 152–160. https://doi.org/10.1111/j.1365-313X.2008.03464.x
  39. Roy S., Griffiths M., Torres-Jerez I., Sanchez B., Antonelli E., Jain D., Krom N., Zhang S., York L.M., Scheible W.-R., Udvardi M. // Front. Plant Sci. 2022. V. 12. P. 793145. https://doi.org/10.3389/fpls.2021.793145
  40. Skripnikov A.Y., Anikanov N.A., Kazakov V.S., Dolgov S.V., Ziganshin R.K., Govorun V.M., Ivanov V.T. // Russ. J. Bioorg. Chem. 2011. V. 37. P. 108–118. https://doi.org/10.1134/s1068162011010158
  41. Fesenko I.A., Arapidi G.P., Skripnikov A.Y., Alexeev D.G., Kostryukova E.S., Manolov A.I., Altukhov I.A., Khazigaleeva R.A., Seredina A.V., Kovalchuk S.I., Ziganshin R.H., Zgoda V.G., Novikova S.E., Semashko T.A., Slizhikova D.K., Ptushenko V.V., Gorbachev A.Y., Govorun V.M., Ivanov V.T. // BMC Plant Biol. 2015. V. 15. P. 87. https://doi.org/10.1186/s12870-015-0468-7
  42. Tian D., Xie Q., Deng Z., Xue J., Li W., Zhang Z., Dai Y., Zheng B., Lu T., De Smet I., Guo Y. // Front. Plant Sci. 2022. V. 13. https://doi.org/10.3389/fpls.2022.1000297
  43. Boschiero C., Dai X., Lundquist P.K., Roy S., de Bang T.C., Zhang S., Zhuang Z., Torres-Jerez I., Udvardi M.K., Scheible W.-R., Zhao P.X. // Plant Physiol. 2020. V. 183. P. 399–413. https://doi.org/10.1104/pp.19.01088
  44. Chen Y.-L., Lee C.-Y., Cheng K.-T., Chang W.-H., Huang R.-N., Nam H.G., Chen Y.-R. // Plant Cell. 2014. V. 26. P. 4135–4148. https://doi.org/10.1105/tpc.114.131185
  45. Mohd-Radzman N.A., Binos S., Truong T.T., Imin N., Mariani M., Djordjevic M.A. // J. Exp. Bot. 2015. V. 66. P. 5289–5300. https://doi.org/10.1093/jxb/erv008
  46. Xu W., Ding G., Yokawa K., Baluška F., Li Q.-F., Liu Y., Shi W., Liang J., Zhang J. // Sci. Rep. 2013. V. 3. P. 1273. https://doi.org/10.1038/srep01273
  47. Xu L., Li S., Shabala S., Jian T., Zhang W. // Front. Plant Sci. 2019. V. 10. P. 637. https://doi.org/10.3389/fpls.2019.00637
  48. Whitford R., Fernandez A., Groodt R.D., Ortega E., Hilson P. // Proc. Natl. Acad. Sci. U. S. A. 2008. V. 105. P. 18625–18630. https://doi.org/10.1073/pnas.0809395105
  49. Matsuzaki Y., Ogawa-Ohnishi M., Mori A., Matsubayashi Y. // Science. 2010. V. 329. P. 1065–1067. https://doi.org/10.1126/science.1191132
  50. Meng L., Buchanan B.B., Feldman L.J., Luan S. // Proc. Natl. Acad. Sci. U. S. A. 2012. V. 109. P. 1760– 1765. https://doi.org/10.1073/pnas.1119864109
  51. Whitford R., Fernandez A., Tejos R., Pérez A.C., Kleine-Vehn J., Vanneste S., Drozdzecki A., Leitner J., Abas L., Aerts M., Hoogewijs K., Baster P., Groodt R.D., Lin Y.–C., Storme V., Van de Peer Y., Beeckman T., Madder A., Devreese B., Luschnig C., Friml J., Hilson P. // Dev. Cell. 2012. V. 22. P. 678–685. https://doi.org/10.1016/j.devcel.2012.02.002
  52. Meng L., Buchanan B.B., Feldman L.J., Luan S. // Mol. Plant. 2012. V. 5. P. 955–957. https://doi.org/10.1093/mp/sss060
  53. Matsubayashi Y., Takagi L., Sakagami Y. // Proc. Natl. Acad. Sci. USA. 1997. V. 94. P. 13357–13362. https://doi.org/10.1073/pnas.94.24.13357
  54. Pearce G., Ryan C.A. // J. Biol. Chem. 2003. V. 278. P. 30044–30050. https://doi.org/10.1074/jbc.M304159200
  55. Matsubayashi Y. // Annu. Rev. Plant Biol. 2014. V. 65. P. 385–413. https://doi.org/10.1146/annurev-arplant-050312-120122
  56. Butenko M.A., Patterson S.E., Grini P.E., Stenvik G.-E., Amundsen S.S., Mandal A., Aalen R.B. // Plant Cell. 2003. V. 15. P. 2296–2307. https://doi.org/10.1105/tpc.014365
  57. Ogawa M., Shinohara H., Sakagami Y., Matsubayashi Y. // Science. 2008. V. 319. P. 294. https://doi.org/10.1126/science.1150083
  58. Stenvik G.-E., Tandstad N.M., Guo Y., Shi C.-L., Kristiansen W., Holmgren A., Clark S.E., Aalen R.B., Butenko M.A. // Plant Cell. 2008. V. 20. P. 1805– 1817. https://doi.org/10.1105/tpc.108.059139
  59. Bubici G., Carluccio A.V., Stavolone L., Cillo F. // PLoS One. 2017. V. 12. https://doi.org/10.1371/journal.pone.0171902
  60. Wu T., Kamiya T., Yumoto H., Sotta N., Katsushi Y., Shigenobu S., Matsubayashi Y., Fujiwara T. // J. Exp. Bot. 2015. V. 66. P. 6889–6900. https://doi.org/10.1093/jxb/erv105
  61. Kou X., Liu Q., Sun Y., Wang P., Zhang S., Wu J. // Front. Plant Sci. 2020. V. 11. P. 601993. https://doi.org/10.3389/fpls.2020.601993
  62. Ampomah-Dwamena C., Tomes S., Thrimawithana A.H., Elborough C., Bhargava N., Rebstock R., Sutherland P., Ireland H., Allan A.C., Espley R.V. // Front. Plant Sci. 2022. V. 13. https://doi.org/10.3389/fpls.2022.967143
  63. Zhang L., Gleason C. // Nat. Plants. 2020. V. 6. P. 625–629. https://doi.org/10.1038/s41477-020-0689-0
  64. Pearce G., Bhattacharya R., Chen Y.-C. // Plant Signal. Behav. 2008. V. 3. P. 1091–1092. https://doi.org/10.4161/psb.3.12.6907
  65. Constabel C.P., Yip L., Ryan C.A. // Plant Mol. Biol. 1998. V. 36. P. 55–62. https://doi.org/10.1023/a:1005986004615
  66. Ohyama K., Shinohara H., Ogawa-Ohnishi M., Matsubayashi Y. // Nat. Chem. Biol. 2009. V. 5. P. 578–580. https://doi.org/10.1038/nchembio.182
  67. Yamaguchi Y.L., Ishida T., Sawa S. // J. Exp. Bot. 2016. V. 67. P. 4813–4826. https://doi.org/10.1093/jxb/erw208
  68. Schardon K., Hohl M., Graff L., Pfannstiel J., Schulze W., Stintzi A., Schaller A. // Science. 2016. V. 354. P. 1594–1597. https://doi.org/10.1126/science.aai8550
  69. Stührwohldt N., Hohl M., Schardon K., Stintzi A., Schaller A. // Commun. Integr. Biol. 2017. V. 11. P. e1395119. https://doi.org/10.1080/19420889.2017.1395119
  70. Stührwohldt N., Ehinger A., Thellmann K., Schaller A. // Plant Physiol. 2020. V. 184. P. 1573–1584. https://doi.org/10.1104/pp.20.00528
  71. Pfister A., Barberon M., Alassimone J., Kalmbach L., Lee Y., Vermeer J.E.M., Yamazaki M., Li G., Maurel C., Takano J., Kamiya T., Salt D.E., Roppolo D., Geldner N. // Elife. 2014. V. 3. P. e03115. https://doi.org/10.7554/eLife.03115
  72. Alassimone J., Fujita S., Doblas V.G., van Dop M., Barberon M., Kalmbach L., Vermeer J.E.M., Rojas- Murcia N., Santuari L., Hardtke C.S., Gelder N. // Nat. Plants. 2016. V. 2. P. 16113. https://doi.org/10.1038/nplants.2016.113
  73. Doblas V.G., Smakowska-Luzan E., Fujita S., Alassimone J., Barberon M., Madalinski M., Belkhadir Y., Geldner N. // Science. 2017. V. 355. P. 280–284. https://doi.org/10.1126/science.aaj1562
  74. Nakayama T., Shinohara H., Tanaka M., Baba K., Ogawa-Ohnishi M., Matsubayashi Y. // Science. 2017. V. 355. P. 284–286. https://doi.org/10.1126/science.aai9057
  75. Lemmon M.A., Schlessinger J. // Cell. 2010. V. 141. P. 1117–1134. https://doi.org/10.1016/j.cell.2010.06.011
  76. Okuda S. // Peptides. 2021. V. 144. P. 170614. https://doi.org/10.1016/j.peptides.2021.170614
  77. Lease K.A., Walker J.C. // Plant Physiol. 2006. V. 142. P. 831–838. https://doi.org/10.1104/pp.106.086041
  78. Etchells J.P., Turner S.R. // Development. 2010. V. 137. P. 767–774. https://doi.org/10.1242/dev.044941
  79. Stahl Y., Wink R.H., Ingram G.C., Simon R. // Curr. Biol. 2009. V. 19. P. 909–914. https://doi.org/10.1016/j.cub.2009.03.060
  80. Olsson V., Joos L., Zhu S., Gevaert K., Butenko M.A., De Smet I. // Annu. Rev. Plant Biol. 2019. V. 70. P. 153– 186. https://doi.org/10.1146/annurev-arplant-042817-040413
  81. Scheer J., Ryan C.A. // Plant Cell. 1999. V. 11. P. 1525–1536. https://doi.org/10.1105/tpc.11.8.1525
  82. Meindl T., Boller T., Felix G. // Plant Cell. 1998. V. 10. P. 1561–1570. https://doi.org/10.1105/tpc.10.9.1561
  83. Matsubayashi Y., Ogawa M., Morita A., Sakagami Y. // Science. 2002. V. 296. P. 1470–1472. https://doi.org/10.1126/science.1069607
  84. Shinohara H., Moriyama Y., Ohyama K., Matsubayashi Y. // Plant J. 2012. V. 70. P. 315–326. https://doi.org/10.1111/j.1365-313X.2012.04934.x
  85. Shinohara H., Mori A., Yasue N., Sumida K., Matsubayashi Y. // Proc. Natl. Acad. Sci. U. S. A. 2016. V. 113. P. 3897–3902. https://doi.org/10.1073/pnas.1522639113
  86. Stegmann M., Monaghan J., Smakowska-Luzan E., Rovenich H., Lehner A., Holton N., Belkhadir Y., Zipfel C. // Science. 2017. V. 355. P. 287–289. https://doi.org/10.1126/science.aal2541
  87. Yamaguchi Y., Huffaker A., Bryan A.C., Tax F.E., Ryan C.A. // Plant Cell. 2010. V. 22. P. 508–522. https://doi.org/10.1105/tpc.109.068874
  88. Mosher S., Seybold H., Rodriguez P., Stahl M., Davies K.A., Dayaratne S., Morillo S.A., Wierzba M., Favery B., Keller H., Tax F.E., Kemmerling B. // Plant J. 2013. V. 73. P. 469–482. https://doi.org/10.1111/tpj.12050
  89. Tabata R., Sumida K., Yoshii T., Ohyama K., Shinohara H., Matsubayashi Y. // Science. 2014. V. 346. P. 343–346. https://doi.org/10.1126/science.1257800
  90. Kinoshita A., Nakamura Y., Sasaki E., Kyozuka J., Fukuda H., Sawa S. // Plant Cell Physiol. 2007. V. 48. P. 1821–1825. https://doi.org/10.1093/pcp/pcm154

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025