Reactions of carbon dioxide bound to aluminum diimine hydride with borane dimethyl sulfide and ammonia

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The reaction of aluminum bis-formate acenaphthene-1,2-diimine complex [(ArBIG-bian)Al(μ-OC(H)O)2Li(Thf)2] (I) (ArBIG-bian = 1,2-bis[(2,6-dibenzhydryl-4-methylphenyl)imino]acenaphthene), prepared by binding carbon dioxide by aluminum diimine hydride [(ArBIG-bian)Al(H)2]–[Li(Thf)4]+, with borane dimethyl sulfide and ammonia was studied. The reaction of I with BH3∙SMe2 (1 : 1) in toluene affords the product of hydroboration of one formate group [(ArBIG-bian)Al(μ-OC(H)O)(OB(H)OCH3)Li(Thf)]2 (II), while the reaction of I with BH3∙SMe2 (1 : 2) is accompanied by reduction of both formate groups and gives complex [(ArBIG-bian)Al(OBOCH3)2OLi2(Thf)2BH4]2 (III), methoxyboroxine (CH3OBO)3 and, presumably, compound [(ArBIG-bian)AlOCH3]. The reaction of I with one equivalent of ammonia in THF gives adduct [(ArBIG-bian)Al(NH3)(μ-OC(H)O)2Li(Thf)2] (IV), in which ammonia is coordinated to the aluminum atom, while the key bonds in I have not undergone ammonolysis. Compounds II–IV were characterized by IR and NMR spectroscopy, elemental analysis, and X-ray diffraction (CCDC no. 2255017 (II), 2255018 (III), 2255019 (IV)).

Texto integral

Acesso é fechado

Sobre autores

M. Moskalev

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences

Email: skatova@iomc.ras.ru
Rússia, Nizhny Novgorod

A. Skatova

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences

Autor responsável pela correspondência
Email: skatova@iomc.ras.ru
Rússia, Nizhny Novgorod

A. Bazanov

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences

Email: skatova@iomc.ras.ru
Rússia, Nizhny Novgorod

E. Baranov

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences

Email: skatova@iomc.ras.ru
Rússia, Nizhny Novgorod

I. Fedushkin

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences

Email: skatova@iomc.ras.ru
Rússia, Nizhny Novgorod

Bibliografia

  1. Lamb W.F., Wiedmann T., Pongratz J. et al. // Environ. Res. Lett. 2021. V. 16. P. 073005.
  2. Liu Q., Wu L., Jackstell R. et al. // Nat. Commun. 2015. V. 6. P. 5933.
  3. Wang W.-H., Himeda Y., Muckerman J.T. et al. // Chem. Rev. 2015. V. 115. № 23. P. 12936.
  4. Wang W.-H., Feng X., Bao M. Transformation of Carbon Dioxide to Formic Acid and Methanol. SpringerBriefs in Molecular Science, Springer Nature, Switzerland AG, 2018. 128 p.
  5. Ye R.-P., Ding J., Gong W. et al. // Nat. Commun. 2019. V. 10. P. 5698.
  6. Zhang Y., Zhang T., Das S. // Green Chem. 2020. V. 22. P. 1800.
  7. Ren M., Zhang Y., Wang X. et. al. // Catalysts 2022. V. 12. P. 403.
  8. Navarro M., Sánchez-Barba L.F., Garcés A. et al. // Catal. Sci. Technol. 2020. V. 10. P. 3265.
  9. Laiwattanapaisarn N., Virachotikul A., Phomphrai K. // Dalton Trans. 2021. V. 50. P. 11039.
  10. Yepes Y.R., Mesías-Salazar Á., Becerra A. et al. // Organometallics. 2021. V. 40. P. 2859.
  11. Saltarini S., Villegas-Escobar N., Martínez J. et al. // Inorg. Chem. 2021. V. 60. P. 1172.
  12. Rauch M., Parkin G. // J. Am. Chem. Soc. 2017. V. 139. P. 18162.
  13. Rauch M., Strater Z., Parkin G. // J. Am. Chem. Soc. 2019. V. 141. P. 17754.
  14. Huang W., Roisnel T., Dorcet V. et al. // Organometallics. 2020. V. 39. P. 698.
  15. Caise A., Hicks J., Fuentes M.A. et al. // Chem. Eur. J. 2021. V. 27. P. 2138.
  16. Anker M.D., Arrowsmith M., Bellham P. et al. // Chem. Sci. 2014. V. 5. P. 2826.
  17. Yan B., Dutta S., Ma X. et al. // Dalton Trans. 2022. V. 51. P. 6756.
  18. Abdalla J.A.B., Riddlestone I.M., Tirfoin R. et al. // Angew. Chem. Int. Ed. 2015. V. 54. P. 5098.
  19. Franz D., Jandl C., Stark C. et al. // ChemCatChem. 2019. V. 11. P. 5275.
  20. Chia C.-C., Teo Y.-C., Cham N. et al. // Inorg. Chem. 2021. V. 60. P. 4569.
  21. Caise A., Jones D., Kolychev E.L. et al. // Chem. Eur. J. 2018. V. 24. 13624.
  22. Sokolov V.G., Koptseva T.S., Moskalev M.V. et al. // Russ. Chem. Bull. 2017. V. 66. № 9. P. 1569. https://doi.org/10.1007/s11172-017-1926-1
  23. Moskalev M.V., Razborov D.A., Bazanov A.A. et al. // Mendeleev Commun. 2020. V. 30. P. 94.
  24. Koptseva T.S., Moskalev M.V., Skatova A.A. et al. // Inorg. Chem. 2022. V. 61. P. 206.
  25. Moskalev M.V., Sokolov V.G., Koptseva T.S. et al. // J. Organomet. Chem. 2021. V. 949. P. 121972.
  26. Koptseva T.S., Moskalev M.V., Skatova A.A. et al. // Russ. Chem. Bull. 2022. V. 71. № 8. P. 1626. https://doi.org/10.1007/s11172-022-3571-6
  27. Koptseva T.S., Skatova A.A., Ketkov S.Y. et al. // Organometallics. 2023. V. 42. P. 123.
  28. Guzmán J., Torguet A., García-Orduña P. et al. // J. Organomet. Chem. 2019. V. 897. P. 50.
  29. Li Z., Yu Z., Luo X. et al. // RSC Adv. 2020. V. 10. P. 33972.
  30. Lin S., Liu J., Ma L. // J. CO2 Util. 2021. V. 54. P. 101759.
  31. Zhai G., Liu Q., Ji J. et al. // J. CO2 Util. 2022. V. 61. P. 102052.
  32. APEX3. Bruker Molecular Analysis Research Tool. Version 2018.7-2. Madison (WI, USA): Bruker AXS Inc., 2018.
  33. SAINT. Data Reduction and Correction Program. Version 8.38A. Madison (WI, USA): Bruker AXS Inc., 2017.
  34. Krause L., Herbst-Irmer R., Sheldrick G.M., Stalke D. // J. Appl. Cryst. 2015. V. 48. P. 3.
  35. Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. P. 3.
  36. Sheldrick G.M. SHELXTL. Version 6.14. Structure Determination Software Suite. Madison (WI, USA): Bruker AXS, 2003.
  37. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3.
  38. Sheldrick G.M. SADABS. Version 2016/2. Bruker/Siemens Area Detector Absorption Correction Program. Madison (WI, USA): Bruker AXS, 2016.
  39. Leong B.-X., Lee J., Li Y. et al. // J. Am. Chem. Soc. 2019. V. 141. P. 17629.
  40. Saxena P., Thirupathi N. // Polyhedron. 2015. V. 98. P. 238.
  41. Lago A.B., Carballo R., Lezama L. et al. // J. Solid State Chem. 2015. V. 231. P. 145.
  42. Yang L., Powell D.R., Houser R.P. // Dalton Trans. 2007. P. 955.
  43. Ruiz J.C.G., Nöth H., Warchhold M. // Eur. J. Inorg. Chem. 2008. P. 251.
  44. Yang Z., Ma X., Oswald R.B. et al. // J. Am. Chem. Soc. 2006. V. 128. P. 12406.
  45. Ma X., Yang Z., Wang X. et al. // Inorg. Chem. 2011. V. 50. P. 2010.
  46. Ma X., Zhong M., Liu Z. et al. // Z. Kristallogr. NCS. 2012. V. 227. P. 580.
  47. Yang Z., Hao P., Liu Z. et al. // J. Organomet. Chem. 2014. V. 751. P. 788.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Scheme 1.

Baixar (112KB)
3. Scheme 2.

Baixar (210KB)
4. Scheme 3.

Baixar (136KB)
5. Scheme 4.

Baixar (72KB)
6. Fig. 1. Molecular structure of complex II. Thermal ellipsoids are shown with 30% probability. Hydrogen atoms, except those bonded to C(79), C(80), C(79)′, C(80)′, B(1), and B(1)′ atoms, as well as 2,6-dibenzhydryl-4-methylphenyl substituents at nitrogen atoms, are not shown.

Baixar (117KB)
7. Fig. 2. Molecular structure of complex III. Thermal ellipsoids are shown with 30% probability. Hydrogen atoms, except for those bonded to C(79), C(80), C(79)′, C(80)′, B(1), and B(1)′ atoms, as well as 2,6-dibenzhydryl-4-methylphenyl substituents at nitrogen atoms are not shown.

Baixar (151KB)
8. Fig. 3. Molecular structure of complex IV. Thermal ellipsoids are shown with 30% probability. Hydrogen atoms, except those bound to N(3), C(79), and C(80) atoms, are not shown.

Baixar (110KB)

Declaração de direitos autorais © Российская академия наук, 2024