Синтез, строение и спектрально-люминесцентные свойства нейтрального трис-комплекса Tb(III) с 4,4,5,5,6,6,6-гептафтор-1-(1-метил-1H-пиразол-4-ил) гексан-1,3-дионом
- Авторы: Тайдаков И.В.1,2,3, Метлин М.Т.1, Метлина Д.А.1, Гончаренко В.Е.1,2, Власова Т.С.3
-
Учреждения:
- Физический институт им. П.Н. Лебедева РАН
- Национально-исследовательский институт "Высшая школа экономики"
- Институт органической химии им. Н.Д. Зелинского РАН
- Выпуск: Том 50, № 9 (2024)
- Страницы: 592-603
- Раздел: Статьи
- URL: https://ruspoj.com/0132-344X/article/view/667665
- DOI: https://doi.org/10.31857/S0132344X24090064
- EDN: https://elibrary.ru/LXJOXE
- ID: 667665
Цитировать
Аннотация
Исследовано взаимодействие 1,3-дикетона, содержащего 1-метил-1H-пиразол-4-ильный и перфторпропильный фрагменты с TbCl3 × 6H2O в присутствии NaOH в среде этанола. Структура и строение комплекса в кристаллическом виде исследованы методом монокристального РСА. Соединение [Tb(L)3(EtOH)2] кристаллизуется в триклинной сингонии, пространственная группа P¯1. Геометрия координационного полиэдра {LnO8} соответствует квадратной антипризме. В кристаллах комплекса реализуются межмолекулярные взаимодействия N…H–O, C–H…O и C–H…F приводящие к образованию супрамолекулярных цепочек. При облучении УФ-светом комплекс проявляет характеристичную для иона Tb3+ зеленую люминесценцию, обусловленную переходами 5D4 → 7Fj (j = 2–6). Определены основные фотофизические параметры люминесценции и предложена схема передачи энергии в комплексе. Синтезированное соединение может представлять интерес как самостоятельный люминофор или в качестве исходного вещества для получения гетеролигандных комплексов путем замещения молекул этанола во внутренней координационной сфере.
Ключевые слова
Полный текст

Об авторах
И. В. Тайдаков
Физический институт им. П.Н. Лебедева РАН; Национально-исследовательский институт "Высшая школа экономики"; Институт органической химии им. Н.Д. Зелинского РАН
Автор, ответственный за переписку.
Email: taidakov@gmail.com
Россия, Москва; Москва; Москва
М. Т. Метлин
Физический институт им. П.Н. Лебедева РАН
Email: taidakov@gmail.com
Россия, Москва
Д. А. Метлина
Физический институт им. П.Н. Лебедева РАН
Email: metlinada@lebedev.ru
Россия, Москва
В. Е. Гончаренко
Физический институт им. П.Н. Лебедева РАН; Национально-исследовательский институт "Высшая школа экономики"
Email: taidakov@gmail.com
Россия, Москва; Москва
Т. С. Власова
Институт органической химии им. Н.Д. Зелинского РАН
Email: taidakov@gmail.com
Россия, Москва
Список литературы
- Costa I.F., Blois L., Paolini T.B. et al. // Coord. Chem. Rev. 2024. V. 502. P. 215590. https://doi.org/10.1016/j.ccr.2023.215590
- Saloutin V.I., Edilova Y. O., Kudyakova Y. S. et al. // Molecules. 2022. V. 27. № 22. P. 7894. https://doi.org/10.3390/molecules27227894
- De Sa G.F., Malta O. L., de Mello Donegá C. et al. // Coord. Chem. Rev. 2000. V. 196. № 1. P. 165. https://doi.org/10.1016/S0010-8545(99)00054-5
- Chauhan A., Kumar A., Singh G. et al. // J. Rare Earths. 2024. V. 42. № 1. P. 16. https://doi.org/10.1016/j.jre.2023.02.006
- Wu A., Huo P., Yu G. et al. // Adv. Opt. Mater. 2022. V. 10. № 22. P. 2200952. https://doi.org/10.1002/adom.202200952
- Ilmi, R., Kansız, S., Dege, N., Khan, M.S. // J. Photochem. Photobiol. A. 2019. V. 377. P. 268. https://doi.org/10.1016/j.jphotochem.2019.03.036
- Bryleva Y.A., Arteme′v A.V., Glinskaya L.A. et al. // New J. Chem. 2021. V. 45. № 31. P. 13869. https://doi.org/10.1039/D1NJ02441H
- Gontcharenko V.E., Lunev A.M., Taydakov I.V. et al. // IEEE Sens. J. 2019. V. 19. № 17. P. 7365–7372. https://doi.org/10.1109/JSEN.2019.2916498
- Zairov R.R., Shamsutdinova N. А., Fattakhova А. N. et al. // Russ. Chem. Bull. 2016. V. 65. P. 1325–1331. https://doi.org/10.1007/s11172-016-1456-2
- Jia Y., Wang J., Zhao L., Yan B. // Talanta. 2022. V. 236. P. 122877. https://doi.org/10.1016/j.talanta.2021.122877
- Lyubov D.M., Neto A.N.C., Fayoumi A. et al. // J. Mater. Chem. C. 2022. V. 10. № 18. P. 7176. https://doi.org/10.1039/d2tc01289h
- Pavlov D.I, Yu X., Ryadun A.A. et al. // Food Chem. 2024. P. 138747. https://doi.org/10.1016/j.foodchem.2024.138747
- Wang L., Shi C., Zhang C. et al. // Adv. Mater Technol. 2021. V. 6. № 8. P. 2100078. https://doi.org/10.1002/admt.202100078
- Yu X., Ryadun A.A., Pavlov D.I. et al. // Adv. Mater. 2024. P. 2311939. https://doi.org/10.1002/adma.202311939
- de Azevedo L.A., Gamonal A., Maier-Queiroz R. et al. // J. Mater. Chem. C. 2021. V. 9. № 29. P. 9261–9270. https://doi.org/10.1039/d1tc01357b
- Korshunov V.M., Metlina D. A., Kompanets V. O. et al. //Dyes and Pigments. 2023. V. 218. P. 111474. https://doi.org/10.1016/j.dyepig.2023.111474
- de Oliveira T.C., de Lima J.F., Colaço M.V. et al. // J. Lumin. 2018. V. 194. P. 747. https://doi.org/10.1016/j.jlumin.2017.09.046
- Ilmi R., Iftikhar K. // J. Photochem. Photobiol. A. 2017. V. 333. P. 142. https://doi.org/10.1016/j.jphotochem.2016.10.014
- Varaksina E.A., Taydakov I.V., Ambrozevich S.A. et al. // J. Lumin. 2018. V. 196. P. 161. https://doi.org/10.1016/j.jlumin.2017.12.006
- Varaksina E.A., Kiskin M.A., Lyssenko K A. et al. // Phys. Chem. Chem. Phys. 2021. V. 23. №. 45. P. 25748. https://doi.org/10.1039/d1cp02951g
- Taydakov I.V., Krasnoselsky S.S. // Chem. Heterocycl. Compd. 2011. V. 47. P. 695. https://doi.org/10.1007/s10593-011-0821-1
- Sheldrick G.M. SADABS. Program for Scaling and Correction of Area Detector Data. Germany: Univ. of Göttingen., 1997.
- Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. P. 3. http://doi.org/10.1107/S2053273314026370
- Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3. http://doi.org/10.1107/S2053229614024218
- Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. P. 339. https://doi.org/10.1107/S0021889808042726
- Metlin M.T., Belousov Y.A., Datskevich N.P. et al. // Russ. Chem. Bull. 2022. V. 71. № 10. P. 2187. https://doi.org/10.1007/s11172-022-3645-5
- Taidakov I.V., Lobanov A.N., Vitukhnovskii A.G. et al. // Russ. J. Coord. Chem. 2013. V. 39. P. 437. https://doi.org/10.1134/S1070328413050072
- Taidakov I.V., Vitukhnovskii A.G., Nefedov S.E. // Russ. J. Inorg. Chem. 2013. V. 58. № 7. P. 783. https://doi.org/10.1134/S0036023613070218
- Metlina D.A., Metlin M.T., Ambrozevich S.A. et al. // Dyes Pigments. 2020. V. 181. P. 108558. https://doi.org/10.1016/j.dyepig.2020.108558
- Metlin M.T., Goryachii D.O., Aminev D.F. et al. // Dyes Pigments. 2021. V. 195. P. 109701. https://doi.org/10.1016/j.dyepig.2021.109701
- Petrov A.I., Lutoshkin M.A., Taydakov I.V. // Eur. J. Inorg. Chem. 2015. V. 2015. № 6. P. 1074. https://doi.org/10.1002/ejic.201403052
- Carnall W.T., Crosswhite H., Crosswhite H.M. Energy level structure and transition probabilities in the spectra of the trivalent lanthanides in LaF₃. Argonne, IL (United States): Argonne National Lab., 1978.
- Bünzli J.C.G., Eliseeva S.V. // Lanthanide luminescence: photophysical, analytical and biological aspects. Springer Series on Fluorescence. V. 7. Berlin; Heidelberg: Springer, 2011. P. 1. https://doi.org/10.1007/4243_2010_3
Дополнительные файлы
