Heteroleptic Zinc Catecholate Complexes with N-Donor Ligands

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

New heteroleptic zinc catecholate complexes based on 3,6-di-tert-butyl-o-benzoquinone and containing metal-coordinated N-donor ligands (2,2'-bipyridine and phenanthroline) were prepared by ligand exchange. According to X-ray diffraction data, both complexes were dimers with multiple intermolecular π–π interactions between the aromatic moieties of neighboring molecules (CCDC nos. 2222704 (I), 2222705 (II)). The electronic transmission spectra of crystalline samples of I and II and their solutions show broad absorption bands in the visible region with a maximum at about 500 nm.

作者简介

A. Maleeva

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, Nizhny Novgorod, Russia

Email: arina@iomc.ras.ru
Россия, Нижний Новгород

O. Trofimova

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, Nizhny Novgorod, Russia

Email: pial@iomc.ras.ru
Россия, Нижний Новгород

I. Yakushev

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia

Email: pial@iomc.ras.ru
Россия, Москва

R. Aysin

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia

Email: pial@iomc.ras.ru
Россия, Москва

A. Piskunov

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, Nizhny Novgorod, Russia

编辑信件的主要联系方式.
Email: pial@iomc.ras.ru
Россия, Нижний Новгород

参考

  1. Weinstein J.A., Tierney M.T., Davies E.S. et al. // Inorg. Chem. 2006. V. 45. P. 4544.
  2. Lu X., Lee S., Hong Y. et al. // J. Am. Chem. Soc. 2017. V. 139. P. 13173.
  3. Cai K., Xie J., Zhao D. // J. Am. Chem. Soc. 2014. V. 136. P. 28.
  4. Pan Z., Zhao K., Wang J. et al. // ACS Nano. 2013. V. 7. P. 5215.
  5. Cui B.-B., Zhong Y.-W., Yao J. // J. Am. Chem. Soc. 2015. V. 137. P. 4058.
  6. Cui B.-B., Tang J.-H., Yao J. et al. // Ang. Chem. Int. Ed. 2015. V. 54. P. 9192.
  7. Cameron L.A., Ziller J.W., Heyduk A.F. // Chem. Sci. 2016. V. 7. P. 1807.
  8. Espa D., Pilia L., Marchiò L. et al. // Dalton Trans. 2013. V. 42. 12429.
  9. Liu Y., Zhang Z., Chen X. et al. // Dyes Pigments. 2016. V. 128. P. 179.
  10. Wong J.L., Higgins R.F., Bhowmick I. et al. // Chem. Sci. 2016. V. 7. P. 1594.
  11. Kramer W.W., Cameron L.A., Zarkesh R.A. et al. // Inorg. Chem. 2014. V. 53. P. 8825.
  12. Ершова И.В., Пискунов А.В., Черкасов В.К. // Успехи химии. 2020. Т. 89. С. 1157 (Ershova I.V., Piskunov A.V., Cherkasov V.K. // Russ. Chem. Rev. 2020. V. 89. P. 1157).
  13. Pierpont C.G. // Coord. Chem. Rev. 2001. V. 219−221. P. 415.
  14. Абакумов Г.А., Пискунов А.В., Черкасов В.К. и др. // Успехи химии. 2018. Т. 87. № 5. С. 393 (Abakumov G.A., Piskunov A.V., Cherkasov V.K. et al. // Russ. Chem. Rev. 2018. V. 87. P. 393).
  15. Rajput A., Sharma A.K., Barman S.K. et al. // Coord. Chem. Rev. 2020. V. 414. P. 213240.
  16. Pashanova K.I., Poddel’sky A.I., Piskunov A.V. // Coord. Chem. Rev. 2022. V. 459. P. 214399.
  17. Kaim W., Das A., Fiedler J. et al. // Coord. Chem. Rev. 2020. V. 404. P. 213114.
  18. Dunn T.J., Chiang L., Ramogida C.F. et al. // Chem. Eur. J. 2013. V. 19. P. 9606.
  19. Chiang L., Kochem A., Jarjayes O. et al. // Chem. Eur. J. 2012. V. 18. P. 14117.
  20. Chiang L., Herasymchuk K., Thomas F. et al. // Inorg. Chem. 2015. V. 54. P. 5970.
  21. Storr T., Wasinger E.C., Pratt R.C. et al. // Ang. Chem. Int. Ed. 2007. V. 46. P. 5198.
  22. Kurahashi T., Fujii H. // J. Am. Chem. Soc. 2011. V. 133. P. 8307.
  23. Aono S., Nakagaki M., Kurahashi T. et al. // J. Chem. Theory Comput. 2014. V. 10. P. 1062.
  24. Kochem A., Gellon G., Leconte N. et al. // Chem. – Eur. J. 2013. V. 19. P. 16707.
  25. Clarke R.M., Jeen T., Rigo S. et al. // Chem. Sci. 2018. V. 9. P. 1610.
  26. Ward M.D. // J. Solid State Electrochem. 2005. V. 9. P. 778.
  27. Pashanova K.I., Bitkina V.O., Yakushev I.A. et al. // Molecules. 2021. V. 26. P. 4622.
  28. Pashanova K.I., Ershova I.V., Trofimova O.Y. et al. // Molecules. 2022. V. 27.
  29. Clarke R.M., Hazin K., Thompson J.R. et al. // Inorg. Chem. 2016. V. 55. P. 762.
  30. Lecarme L., Chiang L., Moutet J. et al. // Dalton Trans. 2016. V. 45. P. 16325.
  31. Yang J., Kersi D.K., Giles L.J. et al. // Inorg. Chem. 2014. V. 5. P. 4791.
  32. Rauth G.K., Pal S., Das D. et al. // Polyhedron. 2001. V. 20. P. 363.
  33. Heinze K., Reinhardt S. // Chem. Eur. J. 2008. V. 14. P. 9482.
  34. Deibel N., Schweinfurth D., Fiedler J. et al. // Dalton Trans. 2011. V. 40. P. 9925.
  35. Scattergood P.A., Jesus P., Adams H. et al. // Dalton Trans. 2015. V. 44. P. 11705.
  36. Best J., Sazanovich I.V., Adams H. et al. // Inorg. Chem. 2010. V. 49. P. 10041.
  37. Roy R., Chattopadhyay P., Sinha C. // Polyhedron. 1996. V. 15. P. 3361.
  38. Tahara K., Kadowaki T., Kikuchi J. et al. // Bull. Chem. Soc. Jpn. 2018. V. 91. P. 1630.
  39. Sobottka S., Noßler M., Ostericher A.L. et al. // Chem. Eur. J. 2020. V. 26. P. 1314.
  40. Maleeva A.V., Ershova I.V., Trofimova O.Y. et al. // Mendeleev Commun. 2022. V. 32. P. 83.
  41. Ершова И.В., Малеева А.В., Айсин Р.Р. и др. // Изв. АН. Сер. хим. 2023. Т. 72. С. 193 (Ershova I.V., Maleeva A.V., Aysin I.A. et al. // Russ. Chem. Bull. 2023. V. 72. P. 193).
  42. Малеева А.В., Трофимова О.Ю., Ершова И.В. и др. // Изв. АН. Сер. хим. 2022. Т. 71. С. 1441 (Maleeva A.V., Trofimova O.Y., Ershova I.V. et al. // Russ. Chem. Bull. 2022. V. 71. P. 1441).
  43. Perrin D.D., Armarego W.L.F., Perrin D.R. Purification of Laboratory Chemicals. Oxford: Pergamon Press, 1980. P. 544.
  44. Гарнов В.А., Неводчиков В.А., Абакумова Л.Г. и др. // ДАН СССР. 1987. Т. 36. С. 1728 (Garnov V.A., Nevodchikov V.I., Abakumova L.G. et al. // Bull. Acad. Sci. USSR. 1987. V. 36. P. 1728).
  45. Пискунов А.В., Малеева А.В., Абакумов Г.А. и др. // Коорд. химия. 2011. Т. 37. С. 243 (Piskunov A.V., Maleeva A.V., Abakumov G.A. et al. // Russ. J. Coord. Chem. 2011. V. 37. P. 243).
  46. APEX3, SAINT and SADABS. Madison (WI, USA): Bruker AXS Inc., 2016.
  47. Krause L., Herbst-Irmer R., Sheldrick G.M. et al. // J. Appl. Cryst. 2015. V. 48. P. 3.
  48. Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. P. 3.
  49. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3.
  50. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. A-ppl. Cryst. 2009. V. 42. P. 339.
  51. Frisch M.J., Trucks G.W., Schlegel H.B. et al. Gaussian 09. Wallingford (CT. USA): Revision D.01. Inc., 2013.
  52. Yanai T., Tew D.P., Handy N.C. // Chem. Phys. Lett. 2004. V. 393. P. 51.
  53. Loos P., Comin M., Blase X., Jacquemin D. // J. Chem. Theory Comput. 2021. P. 3666.
  54. Butler I.S., Gilson D.F.R., Jean-Claude B.J. et al. // Inorg. Chim. Acta. 2014. V. 423. P. 132.
  55. Пискунов А.В., Ладо А.В., Абакумов Г.А. и др. // Изв. АН. Сер. хим. 2007. № 1. С. 92 (Piskunov A.V., Lado A.V., Abakumov G.A. et al. // Russ. Chem. Bull. 2007. V. 56. P. 97).
  56. Piskunov A.V., Maleeva A.V., Mescheryakova I.N. et al. // Eur. J. Inorg. Chem. 2012. V. 2012. P. 4318.
  57. Piskunov A.V., Lado A.V., Fukin G.K. et al. // Heteroatom. Chem. 2006. V. 17. P. 481.
  58. Абакумов Г.А., Черкасов В.К., Пискунов А.В. и др. // Изв. АН. Сер. хим. 2006. № 7. С. 1103 (Abakumov G.A., Cherkasov V.K., Piskunov A.V. et al. // Russ. Chem. Bull. 2006. V. 55. P. 1146).
  59. Piskunov A.V., Maleeva A.V., Bogomyakov A.S. et al. // Polyhedron. 2015. V. 102. P. 715.
  60. Chegerev M.G., Piskunov A.V., Maleeva A.V. et al. // Eur. J. Inorg. Chem. 2016. V. 2016. P. 3813.
  61. Brown S.N. // Inorg. Chem. 2012. V. 51. P. 1251.
  62. Wang Q.-H., Long D.-L., Hu H.-M. et al. // J. Coord. Chem. 2000. V. 49. P. 201.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (76KB)
3.

下载 (594KB)
4.

下载 (746KB)
5.

下载 (81KB)
6.

下载 (229KB)
7.

下载 (1MB)

版权所有 © А.В. Малеева, О.Ю. Трофимова, И.А. Якушев, Р.Р. Айсин, А.В. Пискунов, 2023