Синтез комплекса Никеля(II) с 2,6-дихлорфенил-замещенным пиридилпиразолом

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

При взаимодействии нового 2-(2,6-дихлорфенил)-5-(пиридин-2-ил)-2,4-дигидро-3H-пиразол-3-она (L) с хлоридом никеля(II) синтезирован моноядерный комплекс никеля(II) [L2Ni(CH3OH)]Cl (I). Сольват комплекса I с метанолом [L2Ni(CH3OH)]Cl · 3CH3OH и исходный лиганд L охарактеризованы методом рентгеноструктурного анализа (CCDC № 2314989 (I), 2314988 (L)). Установлено, что лиганд L в растворе находится в пиразолоновой форме (согласно данным ЯМР 1Н), а в кристаллическом состоянии в составе комплекса I — в пиразололовой форме (согласно данным РСА). Комплекс I является редким примером комплекса с пиразололом, атом кислорода которого не участвует в координации к иону переходного металла с образованием координационного полимера.

Полный текст

Доступ закрыт

Об авторах

И. А. Никовский

Институт элементоорганических соединений им. А. Н. Несмеянова РАН

Автор, ответственный за переписку.
Email: igornikovskiy@mail.ru
Россия, Москва

Э. С. Сафиуллина

Институт элементоорганических соединений им. А. Н. Несмеянова РАН

Email: igornikovskiy@mail.ru
Россия, Москва

Ю. В. Нелюбина

Институт элементоорганических соединений им. А. Н. Несмеянова РАН; Московский физико-технический институт

Email: igornikovskiy@mail.ru
Россия, Москва; Долгопрудный, Московская область

Список литературы

  1. Khusnutdinova J.R., Milstein D. // Angew. Chem. Int. Ed. 2015. V. 54. P. 12236. https://doi.org/10.1002/anie.201503873
  2. Kumar A., Daw P., Milstein D. // Chem. Rev. 2021. V. 122. P. 385. https://doi.org/10.1021/acs.chemrev.1c00412
  3. Peris E., Crabtree R.H. // Chem. Soc. Rev. 2018. V. 47. P. 1959. https://doi.org/10.1039/C7CS00693D
  4. Wodrich M.D., Hu X. // Nat. Rev. Chem. 2017. V. 2. P. 0099. https://doi.org/10.1038/s41570-017-0099
  5. Gunanathan C., Milstein D. // Acc. Chem. Res. 2011 V. 44. P. 588. https://doi.org/10.1021/ar2000265
  6. Frey M. // ChemBioChem. 2002. V. 3. P. 153. https://doi.org/10.1002/1439-7633(20020301)3:2/ 3<153::AID-CBIC153>3.0.CO;2-B
  7. Varela-Álvarez A., Musaev D.G. // Chem. Sci. 2013. V. 4. P. 3758. https://doi.org/10.1039/C3SC51723C
  8. Thenarukandiyil R., Paenurk E., Wong A. et al. // Inorg. Chem. 2021. V. 60. P. 18296. https://doi.org/10.1021/acs.inorgchem.1c02925
  9. Lindner R., van den Bosch B., Lutz M. et al. // Organometallics. 2011. V. 30. P. 499. https://doi.org/10.1021/om100804k
  10. Ben-Ari E., Leitus G., Shimon L.J. et al. // J. Am. Chem. Soc. 2006. V. 128. P. 15390–15391. https://doi.org/10.1021/ja066411i
  11. Yang X., Hall M.B. // J. Am. Chem. Soc. 2010. V. 132. P. 120. https://doi.org/10.1021/ja9041065
  12. Scharf A., Goldberg I., Vigalok A. // J. Am. Chem. Soc. 2013. V. 135. P. 967. https://doi.org/10.1021/ja310782k
  13. Elsby M.R., Baker R.T. // Chem. Soc. Rev. 2020. V. 49. P. 8933. https://doi.org/10.1039/D0CS00509F
  14. Roussel R., DeGuerrero M.O., Spegt P. et al. // J. Heterocycl. 1982. V. 19. P. 785–796. https://doi.org/10.1002/jhet.5570190416
  15. Frank J., Katritzky A.R. // J. Chem. Soc., Perkin Trans. 2. 1976. P. 1428. https://doi.org/10.1039/P29760001428
  16. Moore C.M., Dahl E.W., Szymczak N.K. // Curr. Opin. Chem. Biol. 2015. V. 25. P. 9. https://doi.org/10.1016/j.cbpa.2014.11.021
  17. Al-Otaibi J.S. // SpringerPlus. 2015. V. 4. P. 1. https://doi.org/10.1186/s40064-015-1363-2
  18. Pietrzycki W.A., Sepioł J., Tomasik P. et al. // Bull. Soc. Chim. 1993. V. 102. P. 709. https://doi.org/10.1002/bscb.19931021105
  19. Langer R., Diskin-Posner Y., Leitus G. et al. // Angew. Chem. 2011. V. 123. P. 10122. https://doi.org/10.1002/anie.201104542
  20. Langer R., Leitus G., Ben-David Y. et al. // Angew. Chem. Int. Ed. 2011. V. 50. P. 2120. https://doi.org/10.1002/anie.201007406
  21. Srimani D., Ben-David Y., Milstein D. // Angew. Chem. Int. Ed. 2013. V. 52. https://doi.org/10.1002/ange.201300574
  22. Dupau P., Tran Do M.L., Gaillard S., Renaud J.-L. // Angew. Chem. Int. Ed. 2014 V. 53. P. 13004. https://doi.org/10.1002/anie.201407613
  23. Zell T., Milstein D. // Acc. Chem. Res. 2015. V. 48. P. 1979. https://doi.org/10.1021/acs.accounts.5b00027
  24. Polezhaev A.V., Chen C.H., Kinne A. et al. // Inorg. Chem. 2017. V. 56. P. 9505. https://doi.org/10.1021/acs.inorgchem.7b00785
  25. Kuwata S., Ikariya T. // Chem. Comm. 2014. V. 50. P. 14290. https://doi.org/10.1039/C4CC04457F
  26. Pavlov A.A., Aleshin D.Y., Nikovskiy I.A. et al. // Eur. J. Inorg. Chem. 2019. V. 2019. P. 2819. https://doi.org/10.1002/ejic.201900432
  27. Tasker S.Z., Standley E.A., Jamison T.F. // Nature. 2014. V. 509. P 299. https://doi.org/10.1038/nature13274
  28. Chen F., Di Y.Y., Zhang G. // J. Chem. Soc. Pak. 2023. V. 45. P. 19. https://doi.org/10.52568/001191/JCSP/45.01.2023
  29. Nikovskiy I., Polezhaev A., Novikov V. et al. // Chem. Eur. J. 2020. V. 26. P. 5629. https://doi.org/10.1002/chem.202000047
  30. Strunin D.D., Nikovskii I.A., Dan’shina A.A. et al. // Russ. J. Coord. Chem. 2024. V. 50. P. 384. https://doi.org/10.1134/S1070328424600645
  31. Sheldrick G.M. // Acta Crystallogr. A. 2008. V. 64. P. 112. https://doi.org/10.1107/S0108767307043930
  32. Dolomanov O.V., Bourhis L.J., Gildea, R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. P. 339. https://doi.org/10.1107/S0021889808042726
  33. Demaison J., Császár A.G. // J. Mol. Struct. 2012. V. 1023. P. 7. https://doi.org/10.1016/j.molstruc.2012.01.030
  34. Constable E.C., Housecroft C.E. // Molecules. 2019. V. 24. P. 3951. https://doi.org/10.3390/molecules24213951
  35. Teratani T., Koizumi T.A., Yamamoto T. et al. // Inorg. Chem. Commun. 2011. V. 14. P. 836. https://doi.org/10.1016/j.inoche.2011.03.001
  36. Crabtree R.H. // New J. Chem. 2011. V. 35. P. 18. https://doi.org/10.1039/C0NJ00776E

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Спектр ЯМР 1Н лиганда L в CDCl3.

Скачать (128KB)
3. Рис. 2. Общий вид лиганда L (а) и водородно-связанный цикл (б) в кристалле L · CH3OH в представлении атомов эллипсоидами тепловых колебаний (p = 50%). Пунктирными линиями показана межмолекулярная водородная связь.

Скачать (354KB)
4. Рис. 3. Общий вид комплексного катиона [L2Ni(CH3OH)]+ в кристалле [L2Ni(CH3OH)]Cl · 3СH3OH в представлении атомов эллипсоидами тепловых колебаний (p = 50%). Атомы водорода за исключением принадлежащих OH-группам лиганда L и координированной молекулы метанола не показаны, как и хлорид-анион во внешней координационной сфере и сольватные молекулы метанола; нумерация приведена только для иона металла и гетероатомов.

Скачать (238KB)
5. Схема 1

Скачать (206KB)
6. Схема 2

Скачать (73KB)
7. Схема 3

Скачать (113KB)
8. Схема 4

Скачать (83KB)
9. Схема 5

Скачать (107KB)

© Российская академия наук, 2025