Heterocyclic molecules fragmentation due to single electron capture by doubly charged ions
- Autores: Basalaev A.A.1, Kuz’michev V.V.1, Panov M.N.1, Simon K.V.1, Smirnov O.V.1
- 
							Afiliações: 
							- Ioffe Physical-Technical Institute of the Russian Academy of Sciences
 
- Edição: Volume 43, Nº 12 (2024)
- Páginas: 3-15
- Seção: Элементарные физико-химические процессы
- URL: https://ruspoj.com/0207-401X/article/view/684173
- DOI: https://doi.org/10.31857/S0207401X24120018
- ID: 684173
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
The of adenine (Ade, C5H5N5) and cyclodiglycine (DKP, C4H6N2O2) ions fragmentation formed in the singly electron capture during the interaction of molecules in the gas phase with C2+ and O2+ ions with an energy of 12 keV have been studied. The experimentally observed dependence of the relative fragmentation cross section of molecular ions on the type of projectile is qualitatively explained within the framework of the quasi-molecular model. Using the multi-configuration method of self-consistent field in complete active space (CASSCF), calculations of the fragmentation reaction paths of Ade+ and DKP+ ions were performed. The calculated appearance energies are in good agreement with the available experimental data.
Texto integral
 
												
	                        Sobre autores
A. Basalaev
Ioffe Physical-Technical Institute of the Russian Academy of Sciences
							Autor responsável pela correspondência
							Email: a.basalaev@mail.ioffe.ru
				                					                																			                												                	Rússia, 							Saint Petersburg						
V. Kuz’michev
Ioffe Physical-Technical Institute of the Russian Academy of Sciences
														Email: a.basalaev@mail.ioffe.ru
				                					                																			                												                	Rússia, 							Saint Petersburg						
M. Panov
Ioffe Physical-Technical Institute of the Russian Academy of Sciences
														Email: a.basalaev@mail.ioffe.ru
				                					                																			                												                	Rússia, 							Saint Petersburg						
K. Simon
Ioffe Physical-Technical Institute of the Russian Academy of Sciences
														Email: a.basalaev@mail.ioffe.ru
				                					                																			                												                	Rússia, 							Saint Petersburg						
O. Smirnov
Ioffe Physical-Technical Institute of the Russian Academy of Sciences
														Email: a.basalaev@mail.ioffe.ru
				                					                																			                												                	Rússia, 							Saint Petersburg						
Bibliografia
- H.-W. Jochims, M. Schwell, H. Baumgärtel et al., Chem. Phys., 314, 263 (2005). https://doi.org/10.1016/j.chemphys.2005.03.008
- S. Pilling, A. F. Lago, L. H. Coutinho et al., Rapid Commun. Mass Spectrom., 21, 3646 (2007). https://doi.org/10.1002/rcm.3259
- D. Barreiro-Lage, P. Bolognesi, J. Chiarinelli et al., J. Phys. Chem. Lett., 12, 7379 (2021). https://doi.org/10.1021/acs.jpclett.1c01788
- J.D. Chiarinelli, D. Barreiro-Lage, P. Bolognesi et al., Phys. Chem. Chem. Phys., 24, 5855 (2022). https://doi.org/10.1039/D1CP05811H
- D. Barreiro-Lage, J. Chiarinelli, P. Bolognesi et al., Phys. Chem. Chem. Phys., 25, 15635 (2023). https://doi.org/10.1039/D3CP00608E
- S. Feil, K. Gluch, S. Matt-Leubner et al., J. Phys. B: At. Mol. Opt. Phys., 37, 3013 (2004). https://doi.org/10.1088/0953-4075/37/15/001
- M.M. Dawley, K. Tanzer, W.A. Cantrell et al., Phys. Chem. Chem. Phys., 16, 25039 (2014). https://doi.org/10.1039/C4CP03452J
- P.J. M. van der Burgt, S. Finnegan, S. Eden. Eur. Phys. J. D., 69, 173 (2015). https://doi.org/10.1140/epjd/e2015-60200-y
- B. Li, X. Ma, X. L. Zhu et al., J. Phys. B: At. Mol. Opt. Phys., 42, 075204 (2009). https://doi.org/10.1088/0953-4075/42/7/075204
- J. de Vries, R. Hoekstra, R. Morgenstern et al., J. Phys. B: At. Mol. Opt., Phys., 35, 4373 (2002). https://doi.org/10.1088/0953-4075/35/21/304
- J. Tabet, S. Eden, S. Feil et al., Int. J. Mass Spectr., 292, 53 (2010). https://doi.org/10.1016/j.ijms.2010.03.002
- V.V. Afrosimov, A.A. Basalaev, O.S. Vasyutinskii et al., Eur. Phys. J. D, 69, 3 (2015). https://doi.org/10.1140/epjd/e2014-50435-5
- A.A. Basalaev, V.V. Kuz’michev, M.N. Panov et al., Techn. Phys. Lett., 48 (9), 11 (2022). https://doi.org/10.21883/TPL.2022.09.55073.19238
- A.A. Basalaev, V.V. Kuz’michev, M.N. Panov et al., Radiat. Phys. Chem., 193, 109984 (2022). https://doi.org/10.1016/j.radphyschem.2022.109984
- A.A. Basalaev, V.V. Kuz’michev, M.N. Panov et al., Techn. Phys., 67 (7), 812 (2022). https://doi.org/10.21883/TP.2022.07.54477.309-21
- G.M.J. Barca, C. Bertoni, L. Carrington et al., J. Chem. Phys. 152, 154102 (2020). https://doi.org/10.1063/5.0005188
- Yu.A. Dyakov, S.O. Adamson, P.K. Wang et al., Rus. J. Phys. Chem. B, 15, 782 (2021). https://doi.org/10.1134/S1990793121050134
- Yu.A. Dyakov, S.O. Adamson, P.K. Wang et al., Rus. J. Phys. Chem. B, 16, 543 (2022). https://doi.org/10.1134/S1990793122030149
- G.M. Khrapkovskii, I.V. Aristov, D.L. Egorov et al., Rus. J. Phys. Chem. B,. 16, 862 (2022). https://doi.org/10.1134/S1990793122040066
- A.A. Basalaev, V.V. Kuz’michev, M.N. Panov et al., Rus. J. Phys. Chem. B, 17, 1025 (2023) https://doi.org/10.1134/S1990793123050172
- N.S. Hush, A.S. Cheung. Chem. Phys. Lett., 34, 11 (1975).
- C.T. Hwang, C.L. Stumpf, Y.-Q. Yu et al., Int. J. Mass Spectrom., 182/183. 253 (1999).
- N. Russo, M. Toscano, A. Grand. J. Comput. Chem., 21, 1243 (2000).
- R. Improta, G. Scalmani, V. Barone, Int. J. Mass Spectrom., 201, 321 (2000).
- R.K. Janev, L.P. Presnyakov, Phys. Rep., 70, 1 (1981) https://doi.org/10.1016/0370-1573(81)90161-7
- J. Lin, C.Yu, S. Peng, I. Akiyama et al., J. Am. Chem. Soc.. 102, 4627 (1980).
- A.B. Trofimov, J. Schirmer, V.B. Kobychev et al., J. Phys. B: At. Mol. Opt. Phys. 39, 305 (2006). https://doi.org/10.1088/0953-4075/39/2/007
- A.P. W. Arachchilage, F. Wang, V. Feyer et al., J. Chem. Phys., 133, 174319 (2010). https://doi.org/10.1063/1.3499740
- J. Franz, F. A. Gianturco, Eur. Phys. J. D, 68, 279 (2014). https://doi.org/10.1140/epjd/e2014-50072-0
- A. Kramida, Yu. Ralchenko, J. Reader et al., NIST Atomic Spectra Database (ver. 5.9). (2021). https://doi.org/10.18434/T4W30F
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 






