Evaluation of the possibility of formation of low-melting high-entropy alloys of the Al-Zn-Bi-Pb-Sn-In-Ga-Sb system

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

Solders with a low melting point are necessary to solve the problem of integration of microcircuits and the reliability of their packaging, as well as to reduce thermal loads. To develop the next generation of electronic components, it is necessary to develop technologies for producing low-temperature compounds. This problem can be solved by creating solders, including those made of high-entropy alloys, differing in that they are characterized by the formation of solid solutions. These materials must be resistant to fatigue loads, exhibit plasticity, and adhere to other metallic materials. To reduce their toxicity, it is necessary to eliminate lead, which is usually found in solders. This paper presents the results of calculations of melting temperature, thermal conductivity, size factorδr, generalized thermodynamic parameter Ω, electronegativity, valence electron concentration, enthalpy, entropy, Gibb’s energy of mixing and other properties and parameters for 56 variants of five-component alloys of equiatomic composition from low-melting elements: Al, Zn, Bi, Pb, Sn, In, Ga and Sb, including, lead. The HEAPS program was used for the calculation, taking into account the inaccuracy in this program of the melting temperatures of tin, antimony, and indium, which differ from the observed ones. The VEC values for In, Sn, and Sb have been clarified. Based on the analysis of the calculated data, the compositions of potentially high-entropy alloys (HES) have been identified. It is shown that all alloys containing lead, as well as GaBiZnSnIn, GaBiZnSbIn, and AlGaBiZnIn alloys, do not satisfy the values of the δr parameter. They can form multiphase solid solutions, intermetallic compounds (IMC), and bulk-amorphous metallic glasses. The remaining variants of lead-free HEA-solders satisfy most parameters and can form solid solutions, with only AlGaZnSnSb being single–phase, and all others being multiphase solid solutions. The accumulated relatively large array of experimental and theoretical data can provide clarification of the criteria for the formation of the structure and properties of lead-free wind farms, which are in demand in practice.

Авторлар туралы

N. Ilyinykh

Institute of Metallurgy named after Academician N.A. Vatolin, Ural branch of the Russian Academy of Sciences

Email: ninail@bk.ru
Yekaterinburg, Russia

S. Lelyukh

Institute of Metallurgy named after Academician N.A. Vatolin, Ural branch of the Russian Academy of Sciences

Email: ninail@bk.ru
Yekaterinburg, Russia

I. Malkova

Institute of Metallurgy named after Academician N.A. Vatolin, Ural branch of the Russian Academy of Sciences

Email: ninail@bk.ru
Yekaterinburg, Russia

B. Gelchinskiy

Institute of Metallurgy named after Academician N.A. Vatolin, Ural branch of the Russian Academy of Sciences

Email: ninail@bk.ru
Yekaterinburg, Russia

A. Rempel

Institute of Metallurgy named after Academician N.A. Vatolin, Ural branch of the Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: ninail@bk.ru
Yekaterinburg, Russia

Әдебиет тізімі

  1. Zhang Y. High-entropy materials: a brief introduction. Singapore: Springer Nature. 2019. https://doi.org/10.1007/978-981-13-8526-1
  2. Murty B.S., Yeh J.W., Ranganathan S., Bhattacharjee P.P. High-entropy alloys. Amsterdam: Elsevier. 2019. https://doi.org/10.1016/C2017-0-03317-7
  3. Yeh J.-W. High-entropy multielement alloys. Patent US, no. US 20020159914 A1. 2002.
  4. Yeh J.-W., Chen S.-K., Lin S.-J.,Gan J.-Y., Chin T.-S., Shun T.-T., Tsau C.-H., Chang S.-Y. Nanostructured highentropy alloys with multiple principal elements: novel alloy design concepts and outcomes //Adv. Eng. Mater. 2004.6.P. 299–303. https://doi.org/10.1002/adem.200300567
  5. Bataeva Z., Ruktuev A., Ivanov I., Yurgin A., Bataev I. Obzor issledovanij splavov, razrabotannyh na osnove entropijnogo podhoda [An overview of research on alloys developed based on the entropy approach] // Obrabotka metallov. 2021. 23 (2). P. 116–146. https://doi.org/10.17212/1994-6309-2021-23.2-116-146 [In Russian]
  6. Rogachev A.S. Struktura, stabil’nost’ i svojstva vysokoentropijnyh splavov [Structure, stability, and properties of high-entropy alloys] //Fizika metallov i metallovedenie. 2020.121 (8).P. 807–84. https://doi.org/10.31857/S0015323020080094 [In Russian]
  7. Gel’chinskii B.R., Balyakin I.A., Yur’ev A.A., Rempel A.A. Vysokoentropijnye splavy: issledovanie svojstv i perspektivy primeneniya v kachestve zashchitnyh pokrytij [High-entropy alloys: investigation of properties and prospects of application as protective coatings] // Uspekhi himii. 2022.91 (6). RCR5023. https://doi.org/https://doi.org/10.1070/RCR5023 [In Russian]
  8. Zhang W., Liaw P.K., Zhang Y. Science and technology in high-entropy alloys // Science China Materials. 2018.61 (1).P. 2–22. https://doi.org/10.1007/s40843-017-9195-8
  9. Uporov S.A., Estemirova S.H., Sterhov E.V., Zajceva P.V., Skryl’nik M.YU., SHunyaev K.YU., Rempel’ A.A. Osobennosti kristallizacii, struktury i termicheskoj stabil’nosti vysokoentropijnyh splavov GdTbDyHoSc i GdTbDyHoY [Features of crystallization, structure, and thermal stability of high-entropy GdTbDyHoSc and GdTbDyHoY alloys] //Rasplavy. 2022.5. P. 443–453. https://doi.org/10.31857/S0235010622050097 [In Russian]
  10. Feuerbacher M., Lienig T., Thomas С. A single-phase bcc high-entropy alloy in the refractory Zr-Nb-Ti-V-Hf system //Scripta Materialia. 2018.152.P. 40–43. https://doi.org/10.1016/J.SCRIPTAMAT.2018.04.009
  11. Senkov O.N., Wilks G.B., Scott J.M., Miracle D.B. Mechanical properties of Nb25Mo25Ta25W25and V20Nb20Mo20Ta20W20refractory high entropy alloys // Intermetallics. 2011.19(5).P. 698–706. https://doi.org/10.1016/j.intermet.2011.01.004
  12. Osincev K.A., Gromov V.E., Konovalov S.V., Ivanov YU.F., Panchenko I.A. Vysokoentropijnye splavy: struktura, mekhanicheskie svojstva, mekhanizmy deformacii i primenenie [High-entropy alloys: structure, mechanical properties, deformation mechanisms and application] // Izvestiya vuzov. Chernaya metallurgiya. 2021.64 (4).P. 249–258. https://doi.org/10.17073/0368-0797-2021-4-249-258 [In Russian]
  13. Trofimenko N.N., Efimochkin I.Yu., Bol’shakova A.N. Problemy sozdaniya i perspektivy ispol’zovaniya zharoprochnyh vysokoentropijnyh splavov [Problems of creation and prospects of use of heat-resistant high-entropy alloys] // Aviacionnye materialy i tekhnologii. 2018.5. P. 3–8. https://doi.org/10.18577/2071-9140-2018-0-2-3-8 [In Russian]
  14. Vinnik D.A., Trofimov E.A., ZHivulin V.E., Zajceva O.V., Starikov A.Yu., Zhil’cova T.A., Savina Yu.D., Gudkova S.A., Zherebcov D.A., Popova D.A. Obrazovanie vysokoentropijnyh oktaedricheskih kristallov v mnogokomponentnyh oksidnyh sistemah [Formation of high-entropy octahedral crystals in multicomponent oxide systems] // Vestnik YUUrGU. Seriya: Himiya. 2019. 11(3). P. 32–39. https://doi.org/10.14529/chem190303 [In Russian]
  15. Gromov V.E., Ivanov Yu.F., Semin A.P., Panin S.V., Borovskii S.V., Petrikova E.A., Zhang P., Serebryakova A.A. Structure and Deformation Behavior of a High-Entropy AlCoCrFeNiMn Alloy Ribbon //Russ. Metall. 2024.2024.P. 1064–1070. https://doi.org/10.1134/S0036029524702021
  16. Liu Y., Pu L., Yang Y., He Q., Zhou Z., Tan C., Zhao X., Zhang Q., Tu K.N. A high-entropy alloy as very low melting point solder for advanced electronic packaging // Materials Today Advances. September 2020.7:100101. https://doi.org/10.1016/j.mtadv.2020.100101
  17. Chikova O.A., Il’in V.Yu., Cepelev V.S., V’yuhin V.V. Vyazkost’ vysokoentropijnyh rasplavov sistemy Cu-Sn-Bi-Pb-Ga [Viscosity of high–entropy melts of the Cu–Sn–Bi–Pb-Ga system] // Neorganicheskie materialy. 2016.52(5).P. 564–569. https://doi.org/10.7868/S0002337X1605002X [In Russian]
  18. Chikova O.A., Il’in V.Yu., Cepelev V.S., V’yuhin V.V. Vyazkost’ vysokoentropijnyh rasplavov sistemy Cu-Sn-Bi-Pb-Ga [Viscosity of high–entropy melts of the Cu-Sn-Bi-Pb-Ga system] // Rasplavy. 2015.1.P. 33–37. [In Russian]
  19. Chikova O.A., Shmakova K.Yu., Tsepelev V.S. Measurement of the Phase Equilibrium Temperatures of High-Entropy Metallic Alloys by a Viscometric Method //Russian Metallurgy (Metally). 2016.3. P. 218–222. https://doi.org/10.1134/S003602951603006X
  20. V’yuhin V.V., Chikova O.A., Cepelev V.S. Poverhnostnoe natyazhenie zhidkih vysokoentropijnyh ekviatomnyh splavov sistemy Cu-Sn-Bi-In-Pb [Surface tension of liquid high-entropy equiatomic alloys of the Cu-Sn-Bi-In-Pb system] // Zhurnal fizicheskoj himii. 2017.91(4).P. 582–585. https://doi.org/10.7868/S0044453717040343 [In Russian]
  21. Shepelevich V.G., Gusakova O.V. Splavy sistemy Sn–Zn–Ga dlya bessvincovoj pajki, poluchennye vysokoskorostnym zatverdevaniem [Alloys of the Sn–Zn–Ga system for lead-free soldering obtained by high-speed solidification] // Zhurnal Belorusskogo gosudarstvennogo universiteta. Fizika. 2020.2. P. 50–61. https://doi.org/10.33581/2520-2243-2020-2-50-61 [In Russian]
  22. Gusakova O.V., Shepelevich V.G. Splavy sistemy Sn-Zn-Bi-Ga dlya bessvincovoj pajki, poluchennye vysokoskorostnym zatverdevaniem [Alloys of the Sn-Zn-Bi-Ga system for lead-free soldering obtained by high-speed solidification] // Zhurnal Belorusskogo gosudarstvennogo universiteta. Ekologiya. 2020.4. P. 79–85. https://doi.org//10.46646/2521-683X/2020-4-79-85 [In Russian]
  23. Cheng, S., Huang, C.-M., & Pecht, M. (2017). A review of lead-free solders for electronics applications // Microelectronics Reliability.75. P. 77–95. https://doi.org/10.1016/j.microrel.2017.06.016
  24. Sidorov V., Drápala J., Uporov S., Sabirzyanov A., Popel P., Kurochkin A., Grushevskij K. Some physical properties of Al–Sn–Zn melts //EPJ Web of Conferences. 2011. 01022. https://doi.org/10.1051/epjconf/20111501022
  25. Bharath Krupa Teja M., Sharma A., Das S., Das K. A review on nanodispersed lead-free solders in electronics: synthesis, microstructure and intermetallic growth characteristics // J. Mater. Sci. 2022.57.P. 8597–8633. https://doi.org/10.1007/s10853-022-07187-8
  26. Chikova O.A., Cepelev V.S., V’yuhin V.V., Shmakova K.Yu. Rassloenie i usloviya kristallizacii rasplava Cu-Sn-In-Bi-Cd ekviatomnogo sostava [Arrangement and management of integration of Cu-Sn-In-Bi-Cd dynamic composition] // Rasplavy. 2015.3. P.27–31. eLIBRARY ID: 23856251 EDN: UCBFDDО [In Russian]
  27. Zhou Kaiyao, Tang Zhongyi, Lu Yiping, Wang Tongmin, Wang Haipeng, Li Tingju. Composition, Microstructure, Phase Constitution and Fundamental Physicochemical Properties of Low-Melting-Point Multi-Component Eutectic Alloys [J] // J. Mater.Sci. Technol. 2017.33(2).Р. 131–154. https://www.jmst.org/EN/Y2017/V33/I2/131
  28. Qiao J., Mao X., Tu K. -N., Liu Y. Microstructure and Intermetallic Growth Characteristics of Sn-Bi-In-xGa Quaternary Low Melting Point Solders // 2024 International Conference on Electronics Packaging (ICEP). Toyama, Japan. 2024. P. 13–14. https://doi.org/10.23919/ICEP61562.2024.10535549
  29. Wu G., Shen J., Muhammad K. F., Zhou D., Wong Y. H., Si Z. Microstructure and mechanical properties of Cu/In–Zn–Sn–Bi/Cu joints bonded with high-entropy alloy solder at ultra-low temperature // J Mater Sci: Mater Electron. 2025.36.926. https://doi.org/10.1007/s10854-025-14903-y
  30. Zhang Y., Zhou Y.J., Lin J.P., Chen G.L., Liaw P.K. Solid-Solution Phase Formation Rules for Multi-component Alloys//Adv. Eng. Mater. 2008.10(6). P. 534–538. https://doi.org/10.1002/adem.200700240
  31. Ye Y.F., Wang Q., Lu J., Liu C.T., Yang Y. Design of high entropy alloys: A single-parameter thermodynamic rule //Scr. Mater. 2015.104.P. 53–55. https://doi.org/10.1016/j.scriptamat.2015.03.023
  32. Troparevsky M.C., Morris J.R., Kent P.R.C., Lupini A.R., Stocks G.M. Criteria for Predicting the Formation of Single-Phase High-Entropy Alloys // Phys. Rev. X.5. 2015. 011041. https://doi.org/10.1103/PhysRevX.5.011041
  33. X. Yang, Y. Zhang. Prediction of high-entropy stabilized solid-solution in multi-component alloys // Material Chemistry and Physics. 2012.132.P. 233–238. https://doi.org/10.1016/j.matchemphys.2011.11.021
  34. Guo S., Hu Q., Ng C., Liu C.T. More than entropy in high-entropy alloys: Forming solid solutions or amorphous phase //Intermetallics. 2013.41.P. 96–103. https://doi.org/10.1016/j.intermet.2013.05.002
  35. Wang Z., Huang Y., Yang Y., Wang J., Liu C.T. Atomic-size effect and solid solubility of multicomponent alloys //Scripta Materialia. 2014.94.Р. 28–31. https://doi.org/10.1016/j.scriptamat.2014.09.010
  36. Poletti M.G., Battezzati L. Electronic and thermodynamic criteria for the occurrence of high entropy alloys in metallic systems // Acta Materialia. 2014.75.P. 297–306. https://doi.org/10.1016/j.actamat.2014.04.033
  37. Yum-Rozeri V. Vvedenie v fizicheskoe materialovedenie [Introduction to physical materials science]: per. s angl. / Vil’yam YUm-Rozeri; per. V.M. Glazov, S.N. Gorin. Moskva: Metallurgiya, 1965. 203 s. [In Russian]
  38. Zeng Y., Man M., Bai K., Zhang Y.-W. Revealing high-fidelity phase selection rules for high entropy alloys: A combined CALPHAD and machine learning study // Mater. Des. 2021.202.109532. https://doi.org/10.1016/j.matdes.2021.109532
  39. Miedema A.R. On the heat of formation of solid alloys (II) // J. Less-Common Met. 1976.46(1), P. 67–83. https://doi.org/10.1016/0022-5088(76)90180-6
  40. Zhang Y., Zuo T.T., Tang Z., Gao M.C., Dahmen K.A., Liaw P.K., Lu Z.P. Microstructures and properties of high-entropy alloys // Progress in Mater. Sci. 2014.61. P. 1–93. https://doi.org/10.1016/j.pmatsci.2013.10.001
  41. Singh A.K., Kumar N., Dwivedi A., Subramaniam A. A geometrical parameter for the formation of disordered solid solutions in multi-component alloys // Intermetallics. 2014.53.P. 112–119. https://doi.org/10.1016/j.intermet.2014.04.019
  42. Ye Y.F., Wang Q., Lu J., Liu C.T., Yang Y. Design of high entropy alloys: A single-parameter thermodynamic rule // Scr. Mater. 2015.104. P. 53–55. https://doi.org/10.1016/j.scriptamat.2015.03.023
  43. Ye Y.F., Wang Q., Lu J., Liu C.T., Yang Y. The generalized thermodynamic rule for phase selection in multicomponent alloys // Intermetallics. 2015.59.P. 75–80. https://doi.org/10.1016/j.intermet.2014.12.011
  44. Martin P., Madrid-Cortes С. E., Cáceres C., Araya N., Aguilar C., Cabrera J.M. HEAPS: A user-friendly tool for the design and exploration of high-entropy alloys based on semi-empirical parameters // Comp. Phys. Commun. 2022.278.108398. https://doi.org/10.1016/j.cpc.2022.108398
  45. Yokokawa H. Tables of thermodynamic properties ofinorganic compounds //Journal of the National Chemical Laboratory for Industry, Tsukuba Ibaraki 305, Japan. 1988.83. P. 27–118.
  46. Barin I., Knacke O. Thermochemical Properties of Inorganic Substances. Berlin: Springler-Verlag. 1973. 1073 p.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025