Evolution of conception of cell electrogenesis and excitability and electrophysiological school of P.G. Kostuk
- Autores: Kolesnikov S.S.1
-
Afiliações:
- Institute of Cell Biophysics, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences
- Edição: Volume 55, Nº 2 (2024)
- Páginas: 49-69
- Seção: Articles
- URL: https://ruspoj.com/0301-1798/article/view/676243
- DOI: https://doi.org/10.31857/S0301179824020051
- EDN: https://elibrary.ru/cgtswg
- ID: 676243
Citar
Resumo
The formation and evolution of cell physiology in USSR was associated with the academician Platon Kostuk, an outstanding world-renowned scientist. His scientific activity occurred in the second half of 20th century, the period of burst-like progress in electrophysiology that provided a number of remarkable results rewarded with three Novel prizes. In biology of that time, electrophysiology was the only field, wherein methods and approaches were developed for the on-line analysis of physiological processes in cells and tissues. The goal of the given essay is to highlight retrospective aspects of the bioelectricity concept and to characterize the related contribution of the electrophysiological school of P.G. Kostuk to the field.
Palavras-chave
Texto integral

Sobre autores
S. Kolesnikov
Institute of Cell Biophysics, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences
Autor responsável pela correspondência
Email: staskolesnikov@yahoo.com
Rússia, Pushchino, Moscow Region, 142290
Bibliografia
- Брежестовский П. Миссионер в науке // Троицкий вариант. 2010. № 54. C. 8.
- Бертолон П. Об электрической материи тела человеческого, в здоровом и болезненном состоянии. Унив. тип., у В. Окорокова. М. 1789. 454 с.
- Веселовский Н.С., Костюк П.Г., Цындренко А.Я. “Медленные” натриевые каналы в соматической мембране нейронов спинальных ганглиев новорожденных крыс // Доклады АН СССР. 1980. Т. 250. № 1. С. 216–218.
- Костюк П.Г. Микроэлектродная техника. Издательство АН УССР. Киев. 1960. 131 с.
- Костюк П.Г. Двухнейронная рефлекторная дуга. Медгиз. М. 1959. 256 с.
- Костюк П.Г. Над океаном времени. Наукова думка. Киев. 2005. 199 с.
- Крышталь O.A., Пидопличко В.П. Внутриклеточная перфузия гигантских нейронов улитки // Нейрофизиология. 1975. Т. 7. С. 327–329.
- Ajita R. Galen and his contribution to anatomy: A Review // J. Evol. Med. Dent. Sci. 2015. V.4. № 26. P. 4509–4516. https://doi.org/10.14260/jemds/2015/651
- Alexander S.P.H., Mathie A., Peters J.A. et al. The concise guide to pharmacology 2021/22: Ion channels // Br. J. Pharm. 2021. V. 178. P. S157–S245. https://doi.org/10.1111/bph.15539
- Araki T., Ito M., Kostyuk P.G., Oscarsson O., Oshima T. Injection of alkaline cations into cat spinal motoneurones // Nature 1962. V. 196. P. 1319–1320. https://doi.org/10.1038/1961319a0
- Armstrong C.M., Binstock L. Anomalous rectification in the squid giant axon injected with tetraethylammonium chloride // J. Gen. Physiol. 1965. V. 48. № 5. P. 859–872. https://doi.org/10.1085/jgp.48.5.859
- Armstrong C. Interference of injected tetra-n-propyl-ammonium bromide with outward sodium ion current in squid giant axons // Nature. 1966. V. 211. № 5945. P. 322–323. https://doi.org/10.1038/211322a0
- Armstrong C.M. Ionic pores, gates, and gating currents // Q. Rev. Biophys. 1974. V. 7. № 2. P. 179–210. https://doi.org/10.1017/s0033583500001402
- Armstrong C.M., Hollingworth S. Na+ and K+ channels: history and structure // Biophysical J. 2021. V. 120. № 5. P. 756–763. https://doi.org/10.1016/j.bpj.2021.01.013
- Bean R.C., Shepherd W.C., Chan H. et al. Discrete conductance fluctuations in lipid bilayer protein membranes // J. Gen. Physiol. 1969. V. 53. № 6. P. 741–757. https://doi.org/10.1085/jgp.53.6.741
- Beeler G.W., Jr., Reuter H. Membrane calcium current in ventricular myocardial fibres // J. Physiol. 1970. V. 207. № 1. P. 191–209. https://doi.org/10.1113/jphysiol.1970.sp009056
- Belan P., Kostyuk P., Snitsarev V., Tepikin A. Calcium clamp in isolated neurons of the snail Helix pomatia // J. Physiol. 1993. V. 462. P. 47–58. https://doi.org/10.1113/jphysiol.1993.sp019542
- Benham C.D., Tsien R.W. A novel receptor-operated Ca-permeable channel activated by ATP in smooth muscle // Nature 1987. V. 328. № 6127. P. 275–278. https://doi.org/10.1038/328275a0
- Bezanilla F. Ion channels: From conductance to structure // Neuron 2008. V. 60. № 3. P. 456–468. https://doi.org/10.1016/j.neuron.2008.10.035
- Burnstock G., Campbell G., Bennett M., Holman M.E. Inhibition of the smooth muscle of the taenia coli // Nature 1963. V. 200. P. 581–582. https://doi.org/10.1038/200581a0
- Burnstock G. Purinergic signalling: from discovery to current developments // Exp. Physiol. 2014. V. 99. № 1. P. 16–34. https://doi.org/10.1113/expphysiol.2013.071951
- Carmeliet E. From Bernstein’s rheotome to Neher-Sakmann’s patch electrode. The action potential // Physiol. Rep. 2019. V. 7. № 1. e13861.
- Cobb M. Timeline: Exorcizing the animal spirits: Jan Swammerdam on nerve function // Nature Rev. Neurosci. 2002. V. 3. № 5. P. 395–400. https://doi.org/10.1038/nrn806
- Cohen I.B. Benjamin Franklin’s experiments. Harvard University Press. Cambridge. 1941. 451 p.
- Cole, K.S., Curtis H.J. Electric impedance of the squid giant axon during activity // J. Gen. Physiol. 1939. V. 22. № 5. P. 649–670. https://doi.org/10.1085/jgp.22.5.649
- Cole K.S. Dynamic electrical characteristics of the squid axon membrane // Arch. Sci. Physiol. 1949. V. 3. P. 253–258.
- Conti F., Wanke E. Channel noise in nerve membranes and lipid bilayers // Q. Rev. Biophys. 1975. V. 8. № 4. P. 451–506. https://doi.org/10.1017/s0033583500001967
- Curtis H.J., Cole K.S. Membrane action potentials from the squid giant axon // J. Cell. Comp. Physiol. 1940. V. 15. № 2. P. 147–157. https://doi.org/10.1002/JCP.1030150204
- Danielli J.F., Davson H. A contribution to the theory of permeability of thin films // J. Cell. Comp. Physiol. 1935. V. 5. № 4. P. 495–508. https://doi.org/10.1002/jcp.1030050409
- Eccles J.C., Kostyuk P.G., Schmidt R.F. Central pathways responsible for depolarization of primary afferent fibres // J. Physiol. 1962. V. 161. № 2. P. 237–257. https://doi.org/10.1113/jphysiol.1962.sp006884
- Eccles J.C., Kostyuk P.G., Schmidt R.F. Presynaptic inhibition of the central actions of flexor reflex afferents // J. Physiol. 1962. V. 161. P. 258–281. https://doi.org/10.1113/jphysiol.1962.sp006885
- Fatt P, Katz B. The electrical properties of crustacean muscle fibres // J. Physiol. 1953. V. 120. № 1–2. P. 171–204. https://doi.org/10.1113/jphysiol.1953.sp004884
- Fatt P., Ginsborg B.L. The ionic requirements for the production of action potentials in crustacean muscle fibres // J. Physiol. 1958. V. 142. № 3. P. 516–543. https://doi.org/10.1113/jphysiol.1958.sp006034
- Fedulova S.A., Kostyuk P.G., Veselovsky N.S. Calcium channels in the somatic membrane of the rat dorsal root ganglion neurons, effect of cAMP // Brain Res. 1981. V. 214. № 1. P. 210–214. https://doi.org/10.1016/0006-8993(81)90457-1
- Finkelstein G. Mechanical neuroscience: Emil du Bois-Reymond’s innovations in theory and practice // Front. Syst. Neurosci. 2015. V. 9. P. 133. https://doi.org/10.3389/fnsys.2015.00133
- Galvani L. De viribus electricitatis in motu musculari. Commentarius. (Commentary on the effects of electricity on muscular motion). De Bononiesi Scientarium et Ertium Instituto atque // Academia Commentarii. 1791. V. 7. P. 363–418.
- Geduldig D., Junge D. Sodium and calcium components of action potential in the Aplisia giant neurone // J. Physiol. 1968. V. 199. № 2. P. 347–365. https://doi.org/10.1113/jphysiol.1968.sp008657
- Geduldig D., Gruener R. Voltage clamp of the Aplysia giant neurone: early sodium and calcium currents // J. Physiol. 1970. V. 211. № 1. P. 217–244. https://doi.org/10.1113/jphysiol.1970.sp009276
- Gerasimov V.D., Kostyuk, P.G., Maiskii V.A. The influence of divalent cations on the electrical characteristics of membranes of giant neurons // Biofizika 1965. V. 10. P. 447–453.
- González C., Baez-Nieto D., Valencia I., Oyarzún I. et al. K+ channels: function-structural overview // Compr. Physiol. 2012. V. 2. № 3. P. 2087–2149. https://doi.org/10.1002/cphy.c110047
- Gorter E., Grendel F. On bimolecular layers of lipids on the chromocytes of the blood // J. Exp. Med. 1925. V. 41. № 4. P. 439–443. https://doi.org/10.1084/jem.41.4.439
- Hagiwara S., Nakajima S. Differences in Na and Ca spikes as examined by application of tetrodotoxin, procaine, and manganese ions // J. Gen. Physiol. 1966. V. 49. № 4. P. 793–806. https://doi.org/10.1085/jgp.49.4.793
- Hales S. Statical essays: containing haemastaticks. V. 2. W. Innys et al. London. 1733.
- Hamill O., Marty A., Neher E., Sakmann B., Sigworth F.J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches // Pflügers Arch. 1981. V. 391. № 2. P. 85–100. https://doi.org/10.1007/BF00656997
- Hunter J. Anatomical Observations on the Torpedo // Philosoph. Transac. 1773. V. 63. P. 481–489. https://doi.org/10.1098/rstl.1773.0040
- Hille B. The selective inhibition of delayed potassium currents in nerve by tetraethylammonium ion // J. Gen. Physiol. 1967. V. 50. № 5. P. 1287–1302. https://doi.org/10.1085/jgp.50.5.1287
- Hille B. Pharmacological modifications of the sodium channels of frog nerve // J. Gen. Physiol. 1968. V. 51. № 2. P. 199–219. https://doi.org/10.1085/jgp.51.2.199
- Hille B. Ionic channels in nerve membranes // Prog. Biophys. Mol. Biol. 1970. V. 21. P. 1–32. https://doi.org/10.1016/0079-6107(70)90022-2
- Hille B. The permeability of the sodium channel to organic cations in myelinated nerve // J. Gen. Physiol. 1971. V. 58. № 6. P. 599–619. https://doi.org/10.1085/jgp.58.6.599
- Hille B. The permeability of the sodium channel to metal cations in myelinated nerve // J. Gen. Physiol. 1972. V. 59. № 6. P. 637–658. https://doi.org/10.1085/jgp.59.6.637
- Hille B. Ion channels of excitable membranes (3rd ed). Sinauer. Sunderland (Mass). 2001. 814 p.
- Hladky S.B., Haydon D.A. Discreteness of conductance change in bimolecular lipid membranes in the presence of certain antibiotics // Nature 1970. V. 225. № 5231. P. 451–453. https://doi.org/10.1038/225451a0
- Hodgkin A.L., Huxley A.F. Action potentials recorded from inside a nerve fibre // Nature 1939. V. 144. P. 710–711. https://doi.org/10.1038/144710A0
- Hodgkin A.L., Huxley A.F., Katz B. Ionic currents underlying activity in the giant axon of the squid // Arch. Sci. Physiol. 1949. V. 3. P. 129–150.
- Hodgkin A.L., Katz B. The effect of sodium ions on the electrical activity of the giant axon of the squid // J. Physiol. 1949. V. 108. № 1. P. 37–77. https://doi.org/10.1113/jphysiol.1949.sp004310
- Hodgkin A.L. The ionic basis of electrical activity in nerve and muscle // Biol. Rev. 1951. V. 26. № 4. P. 339–409. https://doi.org/10.1111/j.1469-185X.1951.tb01204.x
- Hodgkin A.L., Huxley A.F. Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo // J. Physiol. 1952. V. 116. № 4. P. 449–472. https://doi.org/10.1113/jphysiol.1952.sp004717
- Hodgkin A.L., Huxley A.F. The components of membrane conductance in the giant axon of Loligo // J. Physiol. 1952. V. 116. № 4. P. 473–496. https://doi.org/10.1113/jphysiol.1952.sp004718
- Hodgkin A.L., Huxley A.F. The dual effect of membrane potential on sodium conductance in the giant axon of Loligo // J. Physiol. 1952. V. 116. № 4. P. 497–506. https://doi.org/10.1113/jphysiol.1952.sp004719
- Hodgkin A.L., Huxley A.F. Movement of sodium and potassium ions during nervous activity // Cold Spring Harb Symp Quant Biol 1952. V. 17. P. 43–52. https://doi.org/10.1101/SQB.1952.017.01.007
- Hodgkin A.L., Huxley A.F. A quantitative description of membrane current and its application to conduction and excitation in nerve // J. Physiol. 1952. V. 117. № 4. P. 500–544. https://doi.org/10.1113/jphysiol.1952.sp004764
- Hodgkin A.L., Huxley A.F. Propagation of electrical signals along giant nerve fibers // Proc. R. Soc. Lond. B Biol. Sci. 1952. V. 140. № 899. P. 177–183. https://doi.org/10.1098/rspb.1952.0054
- Islam M.S. Calcium signaling: From basic to bedside // Adv. Exp. Med. Biol. 2020. V. 1131. P. 1–6. https://doi.org/10.1007/978-3-030-12457-1_1
- Katz B. Mechanisms of synaptic transmission // Rev. Mod. Phys. 1959. V. 31. № 2. P. 524–531. https://doi.org/10.1103/RevModPhys.31.524
- Katz B., Miledi R. Ionic requirements of synaptic transmitter release // Nature 1967. V. 215. № 5101. P. 651. https://doi.org/10.1038/215651a0
- Katz B., Miledi R. The role of calcium in neuromuscular facilitation // J. Physiol. 1968. V. 195. № 2. P. 481–492. https://doi.org/10.1113/jphysiol.1968.sp008469
- Kostyuk P.G., Krishtal O.A., Doroshenko P.A. Calcium currents in snail neurones. I. Identification of calcium current // Pflugers Arch. 1974. V. 348. № 2. P. 83–93. https://doi.org/10.1007/BF00586471
- Kostyuk P.G., Krishtal O.A., Doroshenko P.A. Calcium currents in snail neurones. II. The effect of external calcium concentration on the calcium inward current // Pflugers Arch. 1974. V. 348. № 2. P. 95–104. https://doi.org/10.1007/BF00586472
- Kostyuk P.G., Krishtal O.A., Pidoplichko V.I. Effects of internal fluoride and phosphate on membrane currents during intracellular dialysis of nerve cells // Nature 1975. V. 257. № 5528. P. 691–693. https://doi.org/10.1038/257691a0
- Kostyuk P.G., Krishtal O.A., Pidoplichko V.I. Asymmetrical displacement currents in nerve cell membrane and effect of internal fluoride // Nature 1977. V. 267. № 5606. P. 70–72. https://doi.org/10.1038/267070a0
- Kostyuk P.G., Krishtal O.A., Shakhovalov Y.A. Separation of sodium and calcium currents in the somatic membrane of mollusc neurons // J. Physiol. 1977. V. 270. № 3. P. 545–568 https://doi.org/10.1113/jphysiol.1977.sp011968
- Kostyuk P.G., Veselovsky N.S., Fedulova S.A. Ionic currents in the somaticmembrane of rat dorsal root ganglion neurons-II. Calcium currents // Neurosci. 1981. V. 6. № 5. 2431–2437. https://doi.org/10.1016/0306-4522(81)90090-7
- Kostyuk P.G., Krishtal O.A., Pidoplichko V.I. Intracellular perfusion // J. Neurosci. Methods 1981. V. 4. № 3. P. 201–210. https://doi.org/10.1016/0165-0270(81)90032-7
- Kostyuk P.G., Veselovsky N.S., Tsyndrenko A.Y. Ionic currents in the somatic membrane of rat dorsal root ganglion neurons-I. Sodium currents // Neurosci. 1981. V. 6. № 2. P. 2423–2430. https://doi.org/10.1016/0306-4522(81)90088-9
- Kostyuk P.G. Metabolic control of ionic channels in the neuronal membrane // Neurosci. 1984. V. 3. № 4. P. 983–989. https://doi.org/10.1016/0306-4522(84)90282-3
- Kostyuk P.G. Intracellular perfusion of nerve cells and its effects on membrane currents // Physiol. Rev. 1984. V. 64. № 2. P. 435–454. https://doi.org/10.1152/physrev.1984.64.2.435
- Kostyuk P.G., Belan P.V., Tepikin A.V. Free calcium transients and oscillations in nerve cells // Exp. Brain Res. 1991. V. 83. № 2. P. 459–464. https://doi.org/10.1007/BF00231173
- Kostyuk P.G., Kirischuk S.I. Spatial heterogeneity of caffeine- and inositol 1,4,5-trisphosphate-induced Ca2+ transients in isolated snail neurons // Neurosci. 1993. V. 53. № 4. P. 943–947. https://doi.org/10.1016/0306-4522(93)90479-y
- Kostyuk P., Verkhratsky A. Calcium signalling in the nervous system. Wiley &Sons. Chichester, 1995. 220 p.
- Krishtal O.A., Magura I.S. Calcium ions as inward current carriers in mollusk neurons // Comp. Biochem. Physiol. 1970. V. 85. № 4. P. 857–866. https://doi.org/10.1016/0010-406x(70)90080-0
- Krishtal O.A., Pidoplichko V.I. A receptor for protons in the nerve cell membrane // Neurosci. 1980. V. 5. № 12. P. 2325–2327. https://doi.org/10.1016/0306-4522(80)90149-9
- Krishtal O.A., Pidoplichko V.I. A receptor for protons in the membrane of sensory neurons may participate in nociception // Neurosci. 1981. V. 6. № 12. P. 2599–2601. https://doi.org/10.1016/0306-4522(81)90105-6
- Krishtal O.A., Marchenko S.M., Obukhov A.G. Cationic channels activated by extracellular ATP in rat sensory neurons // Neurosci. 1988. V. 27. № 3. P. 995–1000. https://doi.org/10.1016/0306-4522(88)90203-5
- Kruger L.C., Isom L.L. Voltage-Gated Na+ Channels: Not just for conduction. Cold Spring Harb // Perspect. Biol. 2016. V. 8. № 6. a02926. https://doi.org/10.1101/cshperspect.a029264
- Ling G.N., Gerard R.W. The normal membrane potential of frog sartorius fibers // J. Cell. Comp. Physiol. 1949. V. 34. № 3. P. 383–396. https://doi.org/10.1002/jcp.1030340304
- Magura I.S. Action potentials of the mollusc giant neurons in solutions with a change in sodium and calcium concentrations // Neurophysiol. 1969. V. 1. P. 109–117. https://doi.org/10.1113/jphysiol.1968.sp008657
- Marmont G. Studies on the axon membrane; a new method // J. Cell. Comp. Physiol. 1949. V. 34. № 3. P. 351–382. https://doi.org/10.1002/jcp.1030340303
- Miller C. Ion Channel Reconstitution. Springer New York, New York, 1984. 577 p. https://doi.org/10.1007/978-1-4757-1361-9
- Mueller P., Rudin D.O., Tien H.T., Wescott W.C. Reconstitution of cell membrane structure in vitro and its transformation into an excitable system // Nature. 1962. V. 194. P. 979–980. https://doi.org/10.1038/194979a0
- Mueller P., Rudin D.O. Induced excitability in reconstituted cell membrane structure // J. Theor. Biol. 1963. V. 4. № 3. P. 268–280. https://doi.org/10.1016/0022-5193(63)90006-7
- Nakajo K., Kasuya G. Modulation of potassium channels by transmembrane auxiliary subunits via voltage-sensing domains // Physiol. Rep. 2024. V. 12. № 6. e15980. https://doi.org/10.14814/phy2.15980
- Narahashi T.J., Moore J.W., Scott W.R. Tetrodotoxin blockage of sodium conductance increase in lobster giant axon // J. Gen. Physiol. 1964. V. 47. № 5. P. 965–974. https://doi.org/10.1085/jgp.47.5.965
- Neher E., Lux H.D. Voltage clamp on Helix pomatia neuronal membrane; current measurement over a limited area of the soma surface // Pflugers Arch. 1969. V. 311. № 3. P. 272-277. https://doi.org/10.1007/BF00590532
- Neher E., Sakmann B. Single-channel currents recorded from membrane of denervated frog muscle fibres // Nature. 1976. V. 260. № 5554. P. 799–802. https://doi.org/10.1038/260799a0
- Neher E., Sakmann B., Steinbach J.H. The extracellular patch clamp: a method for resolving currents through individual open channels in biological membranes // Pflugers Arch. 1978. V. 375. № 2. P. 219–228. https://doi.org/10.1007/BF00584247
- Newton I. Principia Mathematica. Sir Isaac Newton’s Mathematical Principles of Natural Philosophy and his System of the World: translated into English by Andrew Motte in 1729. University of California Press. Berkeley. 1934. 680 p.
- Nilius B. Pflügers Archiv and the advent of modern electrophysiology. From the first action potential to patch clamp // Pflugers Arch. 2003. V. 447. P. 267–271. https://doi.org/10.1007/s00424-003-1156-2
- Pattison L.A., Callejo G., St. John. Smith. E. Evolution of acid nociception: ion channels and receptors for detecting acid // Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2019. V. 374. № 1785. 20190291. https://doi.org/10.1098/rstb.2019.0291
- Piccolino M. Animal electricity and the birth of electrophysiology: the legacy of Luigi Galvani // Brain Res. Bull. 1998. V. 46. № 5. P. 381–407. https://doi.org/10.1016/s0361-9230(98)00026-4
- Piccolino M. A “Lost time” between science and literature: the “Temps Perdu” from Hermann von Helmholtz to Marcel Proust // Audiologic. Med. 2009. V. 1. № 4. P. 261–270. https://doi.org/10.1080/16513860310023218
- Purves R.D. Ed. Microelectrode methods for intracellular recording and ionophoresis. Academic Press, London. 1981. 146 p. https://doi.org/10.1113/expphysiol.1982.sp002669
- Reuter H. The dependence of slow inward current in Purkinje fibres on the extracellular calcium-concentration // J. Physiol. 1967. V. 192. № 2. P. 479–492. https://doi.org/10.1113/jphysiol.1967.sp008310
- Rojas E., Armstrong C. Sodium conductance activation without inactivation in pronase-perfused axons // Nature: New Biology. 1971. V. 229. № 6. P. 177–178. https://doi.org/10.1038/newbio229177a0
- Rougier O., Vassort G., Garnier D., Gargouil Y.M., Coraboeuf E. Existence and role of a slow inward current during the frog atrial action potential // Pflugers Arch. 1969. V. 308. № 2. P. 91–110. https://doi.org/10.1007/BF00587018
- Sakmann B., Neher E. Eds. Single channel recording. Second edition. Plenum Press, New York, 1995. 700 p. https://doi.org/10.1007/978-1-4419-1229-9
- Sanchez-Sandoval A.L., Hernández-Plata E., Gomora J.C. Voltage-gated sodium channels: from roles and mechanisms in the metastatic cell behavior to clinical potential as therapeutic targets // Front. Pharmacol. 2023. V. 14. 1206136. https://doi.org/10.3389/fphar.2023.1206136
- Storozhuk M., Cherninskyi A., Maximyuk O. Isaev D., Krishtal O. Acid-sensing ion channels: Focus on physiological and some pathological roles in the brain // Curr. Neuropharmacol. 2021. V. 19. № 9. P. 1570–1589. https://doi.org/10.2174/1570159X19666210125151824
- Tasaki I., Hagiwar A.S. Demonstration of two stable potential states in the squid giant axon under tetraethylammonium chloride // J. Gen. Physiol. 1957. V. 40. № 6. P. 859–885. https://doi.org/10.1085/jgp.40.6.859
- Verkhratsky A., North A.R., Petersen O.H., Krishtal O. In memoriam: Platon Kostyuk (1924–2010) // Cell Calcium. 2010. V. 44. № 1. P. 91–93. https://doi.org/10.1016/j.ceca.2010.07.003
- Volta A. On the electricity excited by the mere contact of conducting substances of different kinds // Philosophical Transactions of the Royal Society of London. 1800. P. 403–431. https://doi.org/10.1098/rstl.1800.0018
- Waldmann R., Champigny G., Bassilana F. Heurteaux, C., Lazdunski, M. A proton-gated cation channel involved in acid-sensing // Nature. 1997. V. 386. № 6621. P. 173–177. https://doi.org/10.1038/386173a0
- Walsh J. Of the Electric Property of the Torpedo // Philosophical Transactions. 1773. V. 63. P. 461–480. https://doi.org/10.1098/rstl.1773.0039
- Young J.Z. Structure of nerve fibres and synapses in some invertebrates // Cold Spring Harbor Symp. Quant. Biol. 1936. V. 4. № 5. P. 1–6. https://doi.org/10.1101/SQB.1936.004.01.001
- Xu L., Ding X., Wang T. Mou S., Sun H., Hou T. Voltage-gated sodium channels: structures, functions, and molecular modeling // Drug Discovery Today. 2019. V. 24. № 7. P. 1389–1397. https://doi.org/10.1016/j.drudis.2019.05.014
- Zhu Y., Hu X., Wang L. Zhang J., Pan X., Li Y. et al. Recent advances in acid-sensitive ion channels in central nervous system diseases // Curr. Pharm. Des. 2022. V. 28. № 17. P. 1406–1411. https://doi.org/10.2174/1381612828666220422084159
Arquivos suplementares
