Influence of Metal Structure and Plastic Deformation on Non-Linear Acoustic Parameter

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The practical task of samples control from various metals using principles of nonlinear acoustics is solved. A surface acoustic wave (surfactant) was used for control, the propagation process of which, due to nonlinear effects, is accompanied by generation of a doubled frequency. An experimental device is used to monitor the structural state of the sample metal by recording a change in a nonlinear acoustic parameter. To excite surfactants, a wedge converter with a resonance frequency of 1 MHz was used. The past wave was recorded by a wedge transducer with a resonance frequency of 2 MHz. It has been shown that NAP for tested materials in the initial state has different significance not only for materials belonging to different classes, but also for materials belonging to the same structural class with different chemical composition (12X17G9AN4 and 12Х18Н10Т). Plastic deformation by 2% does not lead to a change in NAP for alloy AMg6 and steels 12X17G9AN4, 20X13N4G9 and 10XSND. The change as a result of plastic deformation by 2% NAP for stainless steels 12X18N10T and 08X17N4M3 is due to a change in their phase composition associated with martensitic transformation. The presented data on the change in NAP from early stages of elastoplastic deformation to pre-destruction for AMg6 and 10XSND demonstrate the possibility of its use as a prognostic criterion for the limit state of the material.

Texto integral

Acesso é fechado

Sobre autores

A. Vanyagin

Institute of Mechanical Engineering Problems of the Russian Academy of Sciences - a branch of the Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: ilyahinsky-aleks@bk.ru
Rússia, Nizhny Novgorod

A. Ilyakhinsky

Institute of Mechanical Engineering Problems of the Russian Academy of Sciences - a branch of the Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences

Email: ilyahinsky-aleks@bk.ru
Rússia, Nizhny Novgorod

V. Rodyushkin

Institute of Mechanical Engineering Problems of the Russian Academy of Sciences - a branch of the Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences

Email: vlkn2005@yandex.ru
Rússia, Nizhny Novgorod

Bibliografia

  1. Никитина Н. Е. Акустоупругость. Опыт практического применения. Н. Новгород: ТАЛАМ, 2005. 208 с.
  2. Углов А. Л., Ерофеев В. И., Смирнов А. Н. Акустический контроль оборудования при изготовлении и эксплуатации. Под ред. академика Митенкова Ф. М. М.: Наука, 2009. 280 с.
  3. Зарембо Л. К., Красильников В. А. Введение в нелинейную акустику. М.: Наука, 1966. 309 с.
  4. Наугольных К. А., Островский Л. А. Нелинейные волновые процессы в акустике. Под ред. Гапонова-Грехова А. В. АН СССР, Науч. совет по пробл. «Акустика», Акуст. ин-т им. Н. Н. Андреева, Ин-т прикл. физики. Москва: Наука, 1990. 236 с.
  5. Руденко О. В. Гигантские нелинейности структурно-неоднородных сред и основы методов акустической диагностики // Успехи физ. наук. 2006. Т. 176. № 1. С. 77−95.
  6. Зайцев В. Ю., Назаров В. Е., Таланов В. И. Неклассические проявления микроструктурно-обусловленной нелинейности: новые возможности для акустической диагностики // Успехи физ. наук. 2006. Т. 176. № 1. С. 97–102.
  7. Коробов А. И., Агафонов А. А., Изосимова М. Ю. Нелинейные упругие волны в твердотельном изотропном клине с дефектами // Журн. техн. физ. 2018. Т. 88. № 3. С. 385−391.
  8. Баллад Е. М., Коршак Б. А., Можаев В. Г., Солодов И. Ю. Генерация третьей гармоники и акустическая нелинейность высших порядков в твердых телах // Вестн. Моск. ун-та. Сер. 3. Физ. Астрон. 2001. № 6. С. 44−48.
  9. Иляхинский А. В., Родюшкин В. М. Экспериментальные исследования влияния повреждаемости стали на закономерности распространения поверхностных волн // Вестн. Пермского национального исследовательского политехнического ун-та. Механика. 2018. № 3. С. 36–43.
  10. Асаинов А. Ф., Ко Сел Лен, Солодов И. Ю. Нелинейное рассеяние поверхностных акустических волн механическими дефектами твердого тела // Акуст. журн. 1993. Т. 39. № 4. С. 592−597.
  11. Назаров В. Е., Сутин А. М. Генерация гармоник при распространении упругих волн в твердых нелинейных средах // Акуст. журн. 1989. Т. 35. № 4. С. 711−716.
  12. Зайцев В. Ю., Назаров В. Е., Турна В., Гусев В. Э., Кастанъеде Б. Экспериментальное исследование нелинейных акустических эффектов в зернистых средах // Акуст. журн. 2005. Т. 51. № 5. С. 633−644.
  13. Коробов А. И., Прохоров В. М. Нелинейные акустические свойства алюминиевого сплава B95 и композита B95 // Акуст. журн. 2016. № 6. С. 661−667.
  14. Хлыбов А. А., Углов А. Л., Рябов Д. А. О возможности спектрально-акустического контроля поврежденности поликристаллических материалов на базе имитационно-механической модели // Физическая мезомеханика. 2023. Т. 26. № 2. С. 106.
  15. Gonchar A. V., Mishakin V. V., Klyushnikov V. A. The effect of phase transformations induced by cyclic loading on theelastic properties and plastic hysteresis of austenitic stainless steel // Int. J. of Fatigue. 2018. V. 106. P. 153−158.
  16. Ботвина Л. Р., Петерсен Т. Б., Жаркова Н. А., Тютин М. Р., Будуева В. Г. Акустические свойства малоуглеродистой стали на различных стадиях разрушения // Деформация и разрушение. 2005. № 4. С. 35−41.
  17. Паздера Л., Коренска Л., Манычева М. Экспериментальное исследование нелинейных эффектов, происходящих в структуре из бетона с нарушениями сплошности // Дефектоскопия. 2013. № 9. С. 47−55.
  18. Yamagishi H., Fukuhara M. Degradation behavior of moduli in extruded pure magnesium during low- to giga-scale cyclic tension fatigue // Acta Materialia. Elsevier. United Kingdom. 2012. № 12 (60). P. 4759–4767.
  19. Somekawa H., Maruyama N., Hiromoto S., Yamamoto A., Mukai T. Fatigue Behaviors and Microstructures in an Extruded Mg-Al-Zn Alloy // Materials transactions / The Japan Institute of Metals. Japan. 2008. № 3 (49). P. 681–684.
  20. Соловьев В. В., Родюшкин В. М., Иляхинский А. В., Сова А. Н. Исследования методом акустического зондирования физико-механических свойств стaли 10ХСНД, используемой в конструкциях космического назначения // «Двойные технологии». 2022. № 2 (99). C. 33−37
  21. Иляхинский И. А., Бугреев А. В., Иляхинский А. В., Родюшкин В. М. Неразрушающий контроль структуры карбидо-кремний-графитового композита акустическим методом // Атомная энергия. 2015. Т. 119. № 6. С. 336−338.
  22. Мальцев М. В. Металлография промышленных цветных металлов и сплавов. 2-е изд. М.: Металлургия, 1970. 364 с.
  23. Химушин Ф. Ф. Нержавеющие стали. 3-е изд., перераб. и доп. М.: Металлургия, 1967. 800 с.
  24. Лахтин Ю. M., Леонтьева В. П. Материаловедение: Учебник для высших технических учебных заведений. 3-е изд., перераб. и доп. М.: Машино-строение, 1990. 528 с.
  25. Панин В. Е. Основы физической мезомеханики // Физическая мезомеханика. 1998. Т. 1. № 1. С. 5−22.
  26. Викторов И. А. Звуковые поверхностные волны в твердых телах. М.: Наука, 1981. 287 с.
  27. Бакушев С. В. Продольно-поперечные волны деформаций слабого разрыва // Проблемы прочности и пластичности. 2014. Т. 76. С. 114−121.
  28. Доронин А. М., Ерофеев В. И. Генерация второй гармоники сдвиговой волны в упруго-пластической среде // Письма о материалах. 2016. Т. 6. № 2. С. 102−104.
  29. Ширгина Н. В., Кокшайский А. И., Коробов А. И. Нелинейные упругие явления при распространении акустических волн на плоской шероховатой границе твердых тел // Ученые записки физического факультета московского университета. 2017. № 4. С. 1740802.
  30. Кокшайский А. И., Коробов А. И., Ширгина Н. В. Диагностика упругих свойств плоской границы двух шероховатых сред поверхностными акустическими волнами // Акуст. журн. 2017. Т. 63. № 2. С. 152−157.
  31. Харкевич А. А. Спектры и анализ. М.: Книжный дом «Либроком», 2009. 240 с.
  32. Ванягин А. В., Родюшкин В.М. Измерение акустической нелинейности повреждённого металла // Измерительная техника. 2017. № 10. С. 42−44.
  33. Ren G., Kim J., Jhang K.-Y. Relationship between second- and third-order acoustic nonlinear parameters in relative measurement // Ultrasonics. 2015. V. 56. P. 539−544. http://www.doi/org/10.1016/j.ultras.2014.10.009
  34. Зуев Л. Б., Данилов В. И. Физические основы прочности материалов. Долгопрудный.: ИД Интеллект, 2016. 376 с.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Functional scheme of the device for measuring a nonlinear acoustic parameter

Baixar (146KB)
3. Fig. 2. Results of NAP measurement on the surface of specimens subjected to plastic deformation before neck formation

Baixar (73KB)

Declaração de direitos autorais © The Russian Academy of Sciences, 2024