Effect of the Weakly Divergent Acoustic Beam on the Space-Time Structure of Pulsed Signals in the Underwater Sound Channel

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

On the example of an underwater sound channel typical for the Philippine Sea [1–3], it was established by numerical simulation using the mode theory that during experimental studies of the propagation of explosive signals by R.A. Vadov [1–3] the manifestation of the weakly divergent beam in the space-time structure of the acoustic field was observed for the first time. The effect consisted in the registration at certain locations of the corresponding points in the oceanic waveguide, along with the classical quadruples of pulses, of additional acoustic signals with small time delays relative to them.

Sobre autores

Yu. Petukhov

Applied Physics Institute, Russian Academy of Sciences

Autor responsável pela correspondência
Email: yuvpetukhov@yandex.ru
Rússia, Nizhny Novgorod

E. Borodina

Applied Physics Institute, Russian Academy of Sciences

Email: borodina@appl.sci-nnov.ru
Rússia, Nizhny Novgorod

Bibliografia

  1. Вадов Р.А. Временная изменчивость тонкой структуры сигнала в океане // Акуст. журн. 1996. Т. 42. № 4. С. 489–495.
  2. Вадов Р.А. Региональные различия временной структуры звуковых полей точечного источника, формируемой в подводном канале // Акуст. журн. 2006. Т. 52. № 5. С. 624–635.
  3. Вадов Р.А. Открытие подводного звукового канала, экспериментальные исследования, региональные различия // Акуст. журн. 2007. Т. 53. № 3. С. 313–328.
  4. Вадов Р.А. Поле точечного источника в подводном звуковом канале Японского моря // Акуст. журн. 1998. Т. 44. № 5. С. 601–609.
  5. Pedersen M.A. Acoustic intensity anomalies introduced by constant velocity gradients // J. Acoust. Soc. Am. 1961. V. 33. № 4. P. 465–474.
  6. Pedersen M.A., Gordon D.E. Comparison of curvilinear and linear profile approximation in the calculaton of underwater sound intensities by ray theory // J. Acoust. Soc. Am. 1967. V. 41. № 2. P. 419–438.
  7. Петухов Ю.В. Лучевые и дифракционные слаборасходящиеся пучки в океанических волноводах // Акуст. журн. 2011. Т. 57. № 3. С. 409–419.
  8. Петухов Ю.В., Абросимов Д.И., Бородина Е.Л. Каустики и слаборасходящиеся пучки лучей в океанических волноводах // Акуст. журн. 2006. Т. 52. № 3. С. 367–374.
  9. Петухов Ю.В., Бородина Е.Л. Проявление слаборасходящихся пучков лучей в пространственно-временной структуре акустических сигналов в океанических волноводах // Акуст. журн. 2010. Т. 56. № 6. С. 795–801.
  10. Бреховских Л.М., Лысанов Ю.П. Теоретические основы акустики океана. М.: Наука, 2007. 270 с.
  11. Jensen F.B., Kuperman W.A., Porter M.B., Schmidt H. Computational ocean acoustics. New York: Springer, 2011. 794 с.
  12. Munk W., Wunsch C. Ocean acoustic tomography: a scheme for large scale monitoring // Deep-Sea Research. 1979. V. 26A. P. 123–161.
  13. Моргунов Ю.Н., Голов А.А., Буренин А.В., Петров П.С. Исследования пространственно-временной структуры акустического поля, формируемого в глубоком море источником широкополосных импульсных сигналов, расположенным на шельфе Японского моря // Акуст. журн. 2019. Т. 65. № 5. С. 641–649.
  14. Моргунов Ю.Н., Безответных В.В., Голов А.А., Буренин А.В., Лебедев М.С., Петров П.С. Экспериментальное исследование импульсной характеристики волновода Японского моря с использованием псевдослучайных последовательностей в приложении к навигации удаленных объектов // Акуст. журн. 2021. Т. 67. № 3. С. 291–297.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © The Russian Academy of Sciences, 2024