On the accuracy of distance estimates by propagation time of sound signals on the arctic shelf

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

As part of numerical modeling, estimates are made of the accuracy of determining the distance between underwater sources and sound receivers located at a distance of several kilometers from each other in the Kara Sea in the autumn. It is assumed that the main source of possible errors in determining the distance is the lack of accurate data on the vertical profile of the sound speed along the propagation path of acoustic signals. Data from September and November were analyzed, in the interval between which significant changes in the profile take place, when the vertical gradient of sound speed changes from negative to positive values. Characteristic values of sound speed variations were obtained by statistical processing of hydrological data taken from the World Ocean Database. The results obtained are important for analyzing the capabilities of underwater acoustic navigation.

作者简介

Yu. Nazarenko

Prokhorov General Physics Institute, Russian Academy of Sciences; Lomonosov Moscow State University

编辑信件的主要联系方式.
Email: julnazr@yandex.ru

Faculty of Geography

俄罗斯联邦, st. Vavilova 38, Moscow, 119991; Leninskie Gory 1, Moscow, 119991

D. Sidorov

Prokhorov General Physics Institute, Russian Academy of Sciences

Email: sidorov.dan.dmit@gmail.com
俄罗斯联邦, st. Vavilova 38, Moscow, 119991

V. Petnikov

Prokhorov General Physics Institute, Russian Academy of Sciences

Email: petniko@kapella.gpi.ru
俄罗斯联邦, st. Vavilova 38, Moscow, 119991

S. Pisarev

Shirshov Institute of Oceanology, Russian Academy of Sciences

Email: pisarev@ocean.ru
俄罗斯联邦, Nakhimovsky prospect 36, Moscow, 117997

A. Lunkov

Prokhorov General Physics Institute, Russian Academy of Sciences

Email: lunkov@kapella.gpi.ru
俄罗斯联邦, st. Vavilova 38, Moscow, 119991

参考

  1. Инзарцев А.В., Каморный А.В., Львов О.Ю., Матвиенко Ю.В., Рылов Н.И. Применение автономного необитаемого подводного аппарата для научных исследований в Арктике // Подводные исследования и робототехника. 2007. № 2. С. 5–14.
  2. Barker L.D.L. et al. Scientific challenges and present capabilities in underwater robotic vehicle design and navigation for oceanographic exploration under-ice // Remote Sensing. 2020. V. 12. No. 16. P. 2588.
  3. Bhatt E.C., Viquez O., Schmidt H. Under-ice acoustic navigation using real-time model-aided range estimation // J. Acoust. Soc. Am. 2022. V. 151. № 4. P. 2656–2671
  4. Сорокин М.А., Петров П.С., Каплуненко Д.Д., Голов А.А., Моргунов Ю.Н. Прогноз эффективной скорости распространения акустических сигна-лов на основе модели циркуляции океана // Акуст. журн. 2021. Т. 67. № 5. С. 521–532.
  5. Петников В.Г., Шатравин А.В., Луньков А.А. О вариациях времени распространения звуковых сигналов при стационарном ледовом покрове // Акуст. журн. 2023. Т. 69. № 5. С. 569–575.
  6. Boyer T.P., Baranova O.K., Coleman C., Garcia H.E., Grodsky A., Locarnini R.A., Mishonov A.V., Paver C.R., Reagan J.R., Seidov D., Smolyar I.V., Weathers K., Zweng M.M. World Ocean Database 2018. Mishonov A.V., Technical Ed. NOAA Atlas NESDIS 87. 2018. https://www.ncei.noaa.gov/sites/default/files/2020-04/wod_intro_0.pdf
  7. Millero F.J., Xu Li. Comments on equations for the speed of sound in seawater // J. Acoust. Soc. Am. 1994. V. 95. № 5. Pt. 1. P. 2757–2759.
  8. Бреховских Л.М, Лысанов Ю.П. Теоретические основы акустики океана М.: Наука, 2007.
  9. Porter M. The KRAKEN normal mode program / La Spezia, Italy. SACLANT Undersea Research Centre, 1991. https://oalib-acoustics.org/website_resources/AcousticsToolbox/manual/kraken.html
  10. Козлов И.Е., Кудрявцев В.Н., Зубкова Е.В., Зимин А.В., Шапрон Б. Характеристики поля короткопериодных внутренних волн в Карском море по данным спутниковых радиолокационных измерений // Исслед. Земли из космоса. 2015. № 4. С. 44–59.

补充文件

附件文件
动作
1. JATS XML

版权所有 © The Russian Academy of Sciences, 2024