Genetic variability of the European perch Perca fluviatilis in the lake-river system of the Sebezhsky National Park

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Based on 10 microsatellite loci of nuclear DNA, the analysis of the genetic variability of perch Perca fluviatilis (L., 1758) from four reservoirs of the Sebezhsky National Park, Sebezhsky district of the Pskov region, which are part of a single lake-river system, was carried out for the first time. The average estimates of the allelic diversity of microsatellite loci and the observed heterozygosity were A = 8.87 and HE = 0.694 and did not significantly differ between the studied localities. The overall genetic differentiation of perch was θ = 0.002. 95% CI (–0.0007; 0.005) and was non-significant. The population-genetic structure based on the studied multilocus genotypes has not been revealed by the Bayesian analysis method. The data obtained indicate a high level of gene flow in perch throughout the studied water area and make it possible to assume the presence of a genetically unified panmix population in the system of Sebezh lakes and rivers.

Full Text

Restricted Access

About the authors

A. V. Semenova

Moscow State University; Vavilov Institute of General Genetics, Russian Academy of Sciences

Author for correspondence.
Email: seman2000@yandex.ru
Russian Federation, Moscow; Moscow

M. N. Melnikova

Moscow State University

Email: seman2000@yandex.ru
Russian Federation, Moscow

E. A. Pivovarov

Moscow State University

Email: seman2000@yandex.ru
Russian Federation, Moscow

S. D. Pavlov

Moscow State University

Email: seman2000@yandex.ru
Russian Federation, Moscow

V. R. Khokhryakov

Sebezhsky National Park

Email: seman2000@yandex.ru
Russian Federation, Sebezhsky District, Pskov region

Е. Е. Kislitsa

Moscow State University

Email: seman2000@yandex.ru
Russian Federation, Moscow

References

  1. Александров Ю.В., Курьянович В.И. 2001. Миноги (Petromyzonidae, Cyclostomata) и рыбы (Pisces) // Биоразнообразие и редкие виды Национального парка “Себежский”. СПб.: Тр. СПбОЕ. Сер. 6. Т. 4. С. 199.
  2. Атлас пресноводных рыб России. 2002. М.: Наука. Т. 2. С. 64.
  3. Бачевская Л.Т., Переверзева В.В., Агапова Г.А., Примак А.А. 2023. Генетическое разнообразие речного окуня (Perca fluviatilis Linnaeus, 1758) из некоторых рек России // Успехи соврeм. биол. T. 143. № 3. С. 261. https://doi.org/10.31857/S0042132423030031
  4. Берг Л.С. 1949. Рыбы пресных вод СССР и сопредельных стран. М..: Изд-во АН СССР. Т.3. С. 1031.
  5. Вейр Б.C. 1995. Анализ генетических данных. М.: Мир.
  6. Жигилева О.Н., Егорова А.Г., Сарьянова А.В. 2019. Морфология и генетическая изменчивость речного окуня Perca fluviatilis (Percidae) речных и озерных экосистем Западной Сибири // Вестн. рыбохоз. науки. Т. 6. № 3(23). С. 4.
  7. Жигилева О.Н., Егорова А.Г., Хохлов Д.А. 2017. Особенности генетики популяций некоторых видов хищных рыб Обь-Иртышского бассейна. Проблемы популяционной биологии // Матер. ХII Всерос. популяционного семинара. С. 91.
  8. Кашулин Н.А., Лукин А.А., Амундсен П.А. 1999. Рыбы пресных вод Субарктики как биоиндикаторы техногенного загрязнения. Апатиты: Изд-во Кольского науч. центра РАН.
  9. Лакин Г.Ф. 1990. Биометрия. М.: Изд-во “Высш. шк.”.
  10. Лобырев Ф.С., Пивоваров Е.А., Хохряков В.Р., Павлов С.Д. 2023. Популяционные характеристики плотвы, густеры и окуня в оз. Озерявки (Национальный парк “Себежский”) // Тр. ВНИРО. Т. 191. С. 37. https://doi.org/10.36038/2307-3497-2023-191-37-52
  11. Лобырев Ф.С., Семенова А.В., Мельникова М.Н. и др. 2024. Генетические особенности популяции леща Abramis brama из озерной системы национального парка “Себежский” // Биология внутр. вод. № 4. С. 604. https://doi.org/10.31857/S0320965224040087
  12. Правдин И.Ф. 1966. Руководство по изучению рыб (преимущественно пресноводных). М.: Изд-во “Пищ. пром-сть”.
  13. Behrmann-Godel J., Gerlach G., Eckmann R. 2006. Kin and population recognition in sympatric Lake Constance perch (Perca fluviatilis L.): can assortative shoaling drive population divergence // Behav. Ecol. Sociobiol. V. 59. P. 461. https://doi.org/10.1007/s00265-005-0070-3
  14. Belfiore N.M., Anderson S.L. 2001. Effects of contaminants on genetic patterns in aquatic organisms: a review // Mutat. Res. V. 489. P. 97. https://doi.org/10.1016/S1383-5742(01)00065-5
  15. Bergek S., Björklund M. 2007. Cryptic barriers to dispersal within a lake allow genetic differentiation of Eurasian perch // Evolution. V. 61. P. 2035. https://doi.org/10.1111/j.1558-5646.2007.00163.x
  16. Bergek S., Björklund M. 2009. Genetic and morphological divergence reveals local subdivision of perch (Perca fluviatilis L.) // Biol. J. Linn. Soc. V. 96. P. 746. https://doi.org/10.1111/j.1095-8312.2008.01149.x
  17. Bergek S., Olsson J. 2009. Spatiotemporal analysis shows stable genetic differentiation and barriers to dispersal in the Eurasian perch (Perca fluviatilis L.) // Evol. Ecol. Res. V. 11. P. 827.
  18. Bergek S., Sundblad G., Björklund M. 2010. Population differentiation in perch Perca fluviatilis: Environmental effects on gene flow // Fish Biol. V. 76. P. 1159. https://doi.org/10.1111/j.1095-8649.2010.02565.x
  19. Bodaly R A., Ward R.D., Mills C.A. 1989. A genetic stock study of perch, Perca fluviatilis L., in Windermere // Aquat. Sci. P. 965. https://doi.org/10.1007/BF00878023
  20. Butkauskas D., Ragauskas A., Sruoga A. et al. 2012. Investigations into genetic diversity of the perch inhabiting Ignalina nuclear power plant cooler and other inland water bodies of Lithuania on the basis of mtDNA analysis // Veterinarija ir Zootechnika. V. 60. P. 7.
  21. DeWoody J.A., Avise J.C. 2000. Microsatellite variation in marine, freshwater and anadromous fishes compared with other animals // J. Fish Biol. V. 56. P. 461. https://doi.org/10.1111/j.1095-8649.2000.tb00748.x
  22. DiBattista J.D. 2008. Patterns of genetic variation in anthropogenically impacted populations // Conserv. Genet. V. 9. P.141. https://doi.org/10.1007/s10592-007-9317-z
  23. Ericson G., Lindesjöö E., Balk L. 1998. DNA adducts and histopathological lesions in perch (Perca fluviatilis) and northern pike (Esox lucius) along a polycyclic aromatic hydrocarbon gradient on the Swedish coastline of the Baltic Sea // Can. J. Fish Aquat. Sci. V. 55. P. 815. https://doi.org/10.1139/f97-296
  24. Ericson G., Larsson A. 2000. DNA adduct in perch (Perca fluviatilis) living in coastal water polluted with bleached pulp mill effluents // Ecotoxicol. Environ. Safety. V. 46. P. 167. https://doi.org/10.1006/eesa.1999.1892
  25. Eschbach E., Nolte A.W., Kohlmann K. et al. 2021. Genetic population structure of a top predatory fish (northern pike, Esox lucius) covaries with anthropogenic alteration of freshwater ecosystems // Freshwater Biol. V. 66. P. 884. https://doi.org/10.1111/fwb.13684
  26. Faulks L.K., Gilligan D.M., Beheregaray L.B. 2011. The role of anthropogenic vs. natural in stream structures in determining connectivity and genetic diversity in an endangered freshwater fish, Macquarie perch (Macquaria australasica) // Evol. Appl. V. 4. P. 589. https://doi.org/10.1111/j.1752-4571.2011.00183.x
  27. Fokina O., Grauda D., Rashal I. 2015. Genetic diversity of two perch Perca fluviatilis populations of the Latgale region, Environment // Tech. Res. V. 11. P. 96. https://doi.org/10.17770/etr2015vol2.280
  28. Gerlach G., Schardt U., Eckmann R., Meyer A. 2001. Kin-structured subpopulations in Eurasian perch (Perca fluviatilis L.) // Heredity. V. 86. P. 213. https://doi.org/10.1046/j.1365-2540.2001.00825.x
  29. Gharibkhani M. 2009. The genetic structure and phylogenetics of pikeperch (Sander lucioperca) Anzali and Amirkolaye wetlands and perch (Perca fluviatilis) populations in Aras Dam and south-west of the Caspian Sea. PhD Thesis, Islamic Azad University, Science and Research Branch, Tehran.
  30. Hedgecock D. 1994. Does variance in reproductive success limit effective population size of marine organisms in genetics and evolution of aquatic organisms. London: Chapman & Hall.
  31. Imbrock F., Appenzeller A., Eckmann R. 1996. Diet and seasonal distribution of perch in Lake Constance: a hydroacoustic study and in situ observations // J. Fish Biol. V. 49. P. 1.
  32. Kalinowski S.T., Wagner A.P., Taper M.L. 2006. ML-Relate: a computer program for maximum likelihood estimation of relatedness and relationship // Mol. Ecol. V 6. P. 576. https://doi.org/10.1111/j.1471-8286.2006.01256.x
  33. Karås P., Neuman E., Sandström O. 1991. Effects of a pulp mill effluent on the population dynamics of perch, Perca fluviatilis // Can. J. Fish Aquat. Sci. V. 48. P. 28. https://doi.org/10.1139/f91-004
  34. Khadher S.B., Agnèse J.F., Milla S. et al. 2015. Patterns of genetic structure of Eurasian perch (Perca fluviatilis L.) in Lake Geneva at the end of the spawning season // J. Great Lakes Res. V. 4. P. 846. https://doi.org/10.1016/j.jglr.2015.04.006
  35. Kipling C., Le Cren E.D. 1984. Mark recapture experiments on fish in Windermere // J. Fish. Biol. V. 24. P. 395. https://doi.org/10.1111/j.1095-8649.1984.tb04811.x
  36. Lewis P.O., Zaykin D. 2001. Genetic Data Analysis: Computer program for the analysis of allelic data. Version 1.0 (d 16c). Free program distributed by the authors over the internet from https://lewis.eeb.unconn.edu/lewishome/software.html
  37. Lindesjöö E., Thulin J. 1990. Fin erosion of perch Perca fluviatilis and ruffe Gymnocephalus cernua in a pulp mill effluent area // Dis. Aquat. Organ. V. 8. P. 119. https://doi.org/10.3354/dao008119
  38. Mantel N. 1967. The detection of disease clustering and a generalized regression approach // Cancer Research. V. 27. P. 209.
  39. Nesbø C., Magnhagen C., Jakobsen K. 1998. Genetic differentiation among stationary and anadromous perch (Perca ftuviatilis) in the Baltic Sea // Hereditas. V. 129. P. 241. https://doi.org/10.1111/j.1601-5223.1998.00241.x
  40. Nesbø C., Fossheim T., Vollestad L., Jakobsen K. 1999. Genetic divergence and phylogeographic relationships among European perch (Perca fluviatilis) populations reflect glacial refugia and postglacial colonization // Mol. Ecol. V. 8. P. 1387. https://doi.org/10.1046/j.1365-294x.1999.00699.x
  41. Olsson J., Mo K., Florin A.B. et al. 2011. Genetic population structure of perch Perca fluviatilis along the Swedish coast of the Baltic Sea // J. Fish Biol. V. 79. P. 122. https://doi.org/10.1111/j.1095-8649.2011.02998.x
  42. Piry S., Luikart G., Cornuet J.M. 1999. Computer note. BOTTLENECK: a computer program for detecting recent reductions in the effective size using allele frequency data // J. Heredity. V. 90. P. 502. https://doi.org/10.1093/jhered/90.4.502
  43. Pritchard J.K., Stephens M., Donnelly P. 2000. Inference of population structure using multilocus genotype data // Genetics. V. 155. P. 945. https://doi.org/10.1093/genetics/155.2.945
  44. Ragauskas A., Ignatavičienė I., Rakauskas V. et al. 2023. Trends of eurasian perch (Perca fluviatilis) mtDNA ATP6 region genetic diversity within the hydro-systems of the eastern part of the Baltic Sea in the anthropocene // Animals. V. 13. P. 3057. https://doi.org/10.3390/ani13193057
  45. Raymond M., Rousset F. 1995. GENEPOP (version 1.2): Population genetics software for exact tests and ecumenicism // J. Heredity. V. 8. P. 248. https://doi.org/10.1093/oxfordjournals.jhered.a111573
  46. Rice W.R. 1989. Analyzing tables of statistical tests // Evolution. V. 43. P. 223. https://doi.org/10.1111/j.1558-5646.1989.tb04220.x
  47. Říha M., Hladík M., Mrkvička T. et al. 2013. Post-spawning dispersal of tributary spawning fish species to a reservoir system // Folia Zoologica. V. 62. P. 1. https://doi.org/10.25225/fozo.v62.i1.a1.2013
  48. Slatkin M. 1985. Gene flow in natural populations // Ann. Rev. Ecol. Syst. V. 16. P. 393.
  49. Oosterhout C., Hutchinson W.F., Wills D.P.M., Shipley P. 2004. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data // Mol. Ecol. Notes. V. 4. P. 535. https://doi.org/10.1111/j.1471-8286.2004.00684.x
  50. Wang N., Eckmann R. 1994. Distribution of perch (Perca fluviatilis L.) during their first year of life in Lake Constance // Hydrobiologia. V. 277. P. 135. https://doi.org/10.1007/BF00007295
  51. Waples R.S. 1998. Separating the wheat from the chaff: patterns of genetic differentiation in high gene flow species // J. Heredity. V. 89. P. 438. https://doi.org/10.1093/jhered/89.5.438
  52. Weir B.S., Hill W.G. 2002. Estimating F-statistics // Ann. Rev. Genet. V. 36. P. 721. https://doi.org/10.1146/annurev.genet.36.050802.093940
  53. Wright S. 1943. Isolation by distance // Genetics. V. 28. P. 114.
  54. Wright S. 1951. The genetical structure of populations // Ann. Eugenics. V. 15. P. 323.
  55. Xu P., Lu C., Sun Z. et al. 2022. In silico screening and development of microsatellite markers for genetic analysis in Perca fluviatilis // Animals. V. 12. P. 1809. https://doi.org/10.3390/ani12141809
  56. Zamora L., Moreno-Amich R. 2002. Quantifying the activity and movement of perch in a temperate lake by integrating acoustic telemetry and a geographic information system // Aquatic telemetry: proceedings of the fourth conference on fish telemetry in Europe. Netherlands: Springer. https://doi.org/10.1023/A:1021396016424
  57. Zhigileva O.N., Egorova A.G. 2022. Genetic variability and phenotypic diversity in populations of the Eurasian perch, Perca fluviatilis (Actinopterygii, Percidae) // Acta Biol. Sibirica. V. 8. P. 237. https://doi.org/10.1134/S2079086423060026

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Map-scheme of the study area (Pskov region, Sebezhsky district).

Download (53KB)

Copyright (c) 2025 The Russian Academy of Sciences