Длина теломер и активность теломеразы как биологические маркеры для диагностики и прогноза патологических нарушений
- Авторы: Москалева Е.Ю.1, Глухов А.И.2,3, Жирник А.С.1, Высоцкая О.В.1, Воробьева С.А.2
-
Учреждения:
- НИЦ «Курчатовский институт», Курчатовский комплекс НБИКС-природоподобных технологий
- ФГАОУ ВО Первый МГМУ им. И.М. Сеченова Минздрава России (Сеченовский Университет)
- Московский государственный университет имени М.В. Ломоносова
- Выпуск: Том 90, № 6 (2025)
- Страницы: 752 – 780
- Раздел: Статьи
- URL: https://ruspoj.com/0320-9725/article/view/688055
- DOI: https://doi.org/10.31857/S0320972525060053
- EDN: https://elibrary.ru/JCXNHO
- ID: 688055
Цитировать
Полный текст



Аннотация
Исследование биологии теломер продолжает оставаться актуальной проблемой. В последние годы на основе анализа нескольких тысяч клинических образцов здоровых лиц показано, что длина теломер (ДТ) лейкоцитов периферической крови коррелирует с ДТ клеток внутренних органов человека и отражает их состояние, снижается при действии повреждающих факторов и может служить показателем состояния здоровья. Снижение ДТ приводит к остановке пролиферации и рассматривается как показатель репликативного старения пролиферирующих клеток, а снижение ДТ лейкоцитов периферической крови – как показатель старения организма. Новые данные фундаментальных исследований позволили сформулировать представления о роли CST–полимеразы альфа/праймазы в синтезе комплементарной С-цепи ДНК после завершения синтеза 3′-G-оверхэнга теломеразой при репликации теломер. Открытие теломерной РНК TERRA и её роли в регуляции активности теломеразы (АТ) и альтернативного удлинения теломер, а также возможности трансляции TERRA стало свидетельством сложной регуляции поддержания ДТ на эпигенетическом уровне. Анализ совокупности опубликованных данных позволяет заключить, что теломеры являются динамическими структурами, и что ДТ претерпевает существенные изменения под воздействием повреждающих факторов и определяется не просто хронологическим возрастом, а суммарным эффектом воздействия всех экзогенных и эндогенных повреждающих факторов в течение жизни. Наследуемое снижение ДТ, обусловленное появлением мутаций в генах белков, определяющих строение теломер и участвующих в репликации теломер, в первую очередь белков шелтеринового комплекса, комплекса CST и теломеразы, обнаружено при ряде генетически обусловленных заболеваний – теломеропатий. Определение ДТ и АТ имеет большое значение для диагностики теломеропатий и может быть полезно при диагностике рака, а определение ДТ – для мониторинга состояния здоровья, в том числе при действии ионизирующего излучения и факторов космического полёта, и для прогноза индивидуальной чувствительности к действию повреждающих факторов разной природы. Разработанные в настоящее время генетические технологии анализа ДТ и АТ доступны для использования в клинических и эпидемиологических исследованиях, активно применяются при диагностике теломеропатий и мониторинге состояния космонавтов и продолжают совершенствоваться.
Полный текст

Об авторах
Е. Ю. Москалева
НИЦ «Курчатовский институт», Курчатовский комплекс НБИКС-природоподобных технологий
Автор, ответственный за переписку.
Email: Moskaleva_EY@nrcki.ru
Россия, 123182 Москва
А. И. Глухов
ФГАОУ ВО Первый МГМУ им. И.М. Сеченова Минздрава России (Сеченовский Университет); Московский государственный университет имени М.В. Ломоносова
Email: moskalevaey@mail.ru
кафедра биологической химии, биологический факультет
Россия, 119048 Москва; 119991 МоскваА. С. Жирник
НИЦ «Курчатовский институт», Курчатовский комплекс НБИКС-природоподобных технологий
Email: moskalevaey@mail.ru
Россия, 123182 Москва
О. В. Высоцкая
НИЦ «Курчатовский институт», Курчатовский комплекс НБИКС-природоподобных технологий
Email: moskalevaey@mail.ru
Россия, 123182 Москва
С. А. Воробьева
ФГАОУ ВО Первый МГМУ им. И.М. Сеченова Минздрава России (Сеченовский Университет)
Email: moskalevaey@mail.ru
кафедра биологической химии
Россия, 119048 МоскваСписок литературы
- Оловников А. М. (1971) Принцип маргинотомии в матричном синтезе полинуклеотидов, ДАН СССР, 201, 1496-1499.
- Olovnikov, A. M. (1973) A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon, J. Theor. Biol., 41, 181-190, https://doi.org/10.1016/0022-5193(73)90198-7.
- Hayflick, L. (1965) The limited in vitro lifetime of human diploid cell strains, Exp. Cell Res., 37, 614-636, https://doi.org/10.1016/0014-4827(65)90211-9.
- Greider, C. W., and Blackburn, E. H. (1985) Identification of a specific telomere terminal transferase activity in Tetrahymena extracts, Cell, 43, 405-413, https://doi.org/10.1016/0092-8674(85)90170-9.
- Greider, C. W., and Blackburn, E. H. (1989) A telomeric sequence in the RNA of Tetrahymena telomerase required for telomere repeat synthesis, Nature, 337, 331-337, https://doi.org/10.1038/337331a0.
- Greider, C. W. (1998) Telomeres and senescence: the history, the experiment, the future, Curr. Biol., 8, R178-R181, https://doi.org/10.1016/s0960-9822(98)70105-8.
- Harley, C. B., Futcher, A. B., and Greider, C. W. (1990) Telomeres shorten during ageing of human fibroblasts, Nature, 345, 458-460, https://doi.org/10.1038/345458a0.
- Hastie, N. D., Dempster, M., Dunlop, M. G., Thompson, A. M., Green, D. K., and Allshire, R. C. (1990) Telomere reduction in human colorectal carcinoma and with ageing, Nature, 346, 866-868, https://doi.org/10.1038/ 346866a0.
- От редакции (2023) Биохимия, 88, 2037, https://doi.org/10.31857/S0320972523110015.
- Olovnikov, I. A. (2024) Telomeres in health and longevity: special issue in memory of Alexey Olovnikov, Biogerontology, 25, 191-193, https://doi.org/10.1007/s10522-023-10090-7.
- Griffith, J. D., Comeau, L., Rosenfield, S., Stansel, R. M., Bianchi, A., Moss, H., and de Lange, T. (1999) Mammalian telomeres end in a large duplex loop, Cell, 97, 503-514, https://doi.org/10.1016/s0092-8674(00)80760-6.
- Doksani, Y., and de Lange, T. (2014) The role of double-strand break repair pathways at functional and dysfunctional telomeres, Cold Spring Harb. Perspect. Biol., 6, a016576, https://doi.org/10.1101/cshperspect. a016576.
- Ruis, P., and Boulton, S. J. (2021) The end protection problem-an unexpected twist in the tail, Genes Dev., 35, 1-21, https://doi.org/10.1101/gad.344044.120.
- Yang, D. (2019) G-Quadruplex DNA and RNA, Methods Mol. Biol., 2035, 1-24, https://doi.org/10.1007/ 978-1-4939-9666-7_1.
- De Lange, T. (2005) Shelterin: the protein complex that shapes and safeguards human telomeres, Genes Dev., 19, 2100-2110, https://doi.org/10.1101/gad.1346005.
- O’Connor, M. S., Safari, A., Xin, H., Liu, D., and Songyang, Z. (2006) A critical role for TPP1 and TIN2 interaction in high-order telomeric complex assembly, Proc. Natl. Acad. Sci. USA, 103, 11874-11879, https://doi.org/10.1073/pnas.0605303103.
- De Lange, T. (2018) Shelterin-mediated telomere protection, Annu. Rev. Genet., 52, 223-247, https://doi.org/10.1146/annurev-genet-032918-021921.
- Lim, C. J., and Cech, T. R. (2021) Shaping human telomeres: from shelterin and CST complexes to telomeric chromatin organization, Nat. Rev. Mol. Cell Biol., 22, 283-298, https://doi.org/10.1038/s41580-021-00328-y.
- Smith, E. M., Pendlebury, D. F., and Nandakumar, J. (2020) Structural biology of telomeres and telomerase, Cell. Mol. Life Sci., 77, 61-79, https://doi.org/10.1007/s00018-019-03369-x.
- Palm, W., and de Lange, T. (2008) How shelterin protects mammalian telomeres, Annu. Rev. Genet., 42, 301-334, https://doi.org/10.1146/annurev.genet.41.110306.130350.
- Wang, F., and Lei, M. (2011) Human telomere POT1–TPP1 complex and its role in telomerase activity regulation, Methods Mol. Biol., 735, 173-187, https://doi.org/10.1007/978-1-61779-092-8_17.
- Wang, F., Podell, E. R., Zaug, A. J., Yang, Y., Baciu, P., Cech, T. R., and Lei, M. (2007) The POT1–TPP1 telomere complex is a telomerase processivity factor, Nature, 445, 506-510, https://doi.org/10.1038/nature05454.
- Doksani, Y. (2019) The response to DNA damage at telomeric repeats and its consequences for telomere function, Genes (Basel), 10, 318, https://doi.org/10.3390/genes10040318.
- Yegorov, Y. E. (2023) Olovnikov, telomeres, and telomerase. Is it possible to prolong a healthy life? Biochemistry (Moscow), 88, 1704-1718, https://doi.org/10.1134/S0006297923110032.
- Martens, U. M., Chavez, E. A., Poon, S. S., Schmoor, C., and Lansdorp, P. M. (2000) Accumulation of short telomeres in human fibroblasts prior to replicative senescence, Exp. Cell Res., 256, 291-299, https://doi.org/10.1006/excr.2000.4823.
- Gaspar, T. B., Sa, A., Lopes, J. M., Sobrinho-Simoes, M., Soares, P., and Vinagre, J. (2018) Telomere maintenance mechanisms in cancer, Genes, 9, https://doi.org/10.3390/genes9050241.
- Campisi, J., and d’Adda di Fagagna, F. (2007) Cellular senescence: when bad things happen to good cells, Nat. Rev. Mol. Cell Biol., 8, 729-740, https://doi.org/10.1038/nrm2233.
- Fumagalli, M., Rossiello, F., Clerici, M., Barozzi, S., Cittaro, D., Kaplunov, J. M., Bucci, G., Dobreva, M., Matti, V., Beausejour, C. M., Herbig, U., Longhese, M. P., and d’Adda di Fagagna, F. (2012) Telomeric DNA damage is irreparable and causes persistent DNA-damage-response activation, Nat. Cell Biol., 14, 355-365, https://doi.org/10.1038/ncb2466.
- Slawinska, N., and Krupa, R. (2021) Molecular aspects of senescence and organismal ageing-DNA damage response, telomeres, inflammation and chromatin, Int. J. Mol. Sci., 22, https://doi.org/10.3390/ijms22020590.
- GTEx Consortium (2020) The GTEx Consortium atlas of genetic regulatory effects across human tissues, Science, 369, 1318-1330, https://doi.org/10.1126/science.aaz1776.
- Demanelis, K., Jasmine, F., Chen, L. S., Chernoff, M., Tong, L., Delgado, D., Zhang, C., Shinkle, J., Sabarinathan, M., Lin, H., Ramirez, E., Oliva, M., Kim-Hellmuth, S., Stranger, B. E., Lai, T. P., Aviv, A., Ardlie, K. G., Aguet, F., Ahsan, H., GTEx Consortium, et al. (2020) Determinants of telomere length across human tissues, Science, 369, https://doi.org/10.1126/science.aaz6876.
- Carver, A. J., Hing, B., Elser, B. A., Lussier, S. J., Yamanashi, T., Howard, M. A., 3rd, Kawasaki, H., Shinozaki, G., and Stevens, H. E. (2024) Correlation of telomere length in brain tissue with peripheral tissues in living human subjects, Front. Mol. Neurosci., 17, 1303974, https://doi.org/10.3389/fnmol.2024.1303974.
- Finnicum, C. T., Dolan, C. V., Willemsen, G., Weber, Z. M., Petersen, J. L., Beck, J. J., Codd, V., Boomsma, D. I., Davies, G. E., and Ehli, E. A. (2017) Relative telomere repeat mass in buccal and leukocyte-derived DNA, PLoS One, 12, e0170765, https://doi.org/10.1371/journal.pone.0170765.
- Frenck, R. W., Jr., Blackburn, E. H., and Shannon, K. M. (1998) The rate of telomere sequence loss in human leukocytes varies with age, Proc. Natl. Acad. Sci. USA, 95, 5607-5610, https://doi.org/10.1073/pnas.95.10.5607.
- Kagirova, Z. R., Demina, I. A., Blokhin, B. M., and Rumyantsev, A. G. (2017) Telomere length and children’s health [in Russian], Pediatric Hematol. Oncol. Immunopathol., 16, 107-112, https://doi.org/10.24287/1726-1708-2017-16-4-107-112.
- Takai, H., Aria, V., Borges, P., Yeeles, J. T. P., and de Lange, T. (2024) CST-polymerase alpha-primase solves a second telomere end-replication problem, Nature, 627, 664-670, https://doi.org/10.1038/s41586-024-07137-1.
- Zaug, A. J., Goodrich, K. J., Song, J. J., Sullivan, A. E., and Cech, T. R. (2022) Reconstitution of a telomeric replicon organized by CST, Nature, 608, 819-825, https://doi.org/10.1038/s41586-022-04930-8.
- Cesare, A. J., and Reddel, R. R. (2010) Alternative lengthening of telomeres: models, mechanisms and implications, Nat. Rev. Genet., 11, 319-330, https://doi.org/10.1038/nrg2763.
- Draskovic, I., and Londono Vallejo, A. (2013) Telomere recombination and alternative telomere lengthening mechanisms, Front. Biosci., 18, 1-20, https://doi.org/10.2741/4084.
- Hu, Y., Shi, G., Zhang, L., Li, F., Jiang, Y., Jiang, S., Ma, W., Zhao, Y., Songyang, Z., and Huang, J. (2016) Switch telomerase to ALT mechanism by inducing telomeric DNA damages and dysfunction of ATRX and DAXX, Sci. Rep., 6, 32280, https://doi.org/10.1038/srep32280.
- Feng, J., Funk, W. D., Wang, S. S., Weinrich, S. L., Avilion, A. A., Chiu, C. P., Adams, R. R., Chang, E., Allsopp, R. C., Yu, J., and et al. (1995) The RNA component of human telomerase, Science, 269, 1236-1241, https://doi.org/10.1126/science.7544491.
- Roake, C. M., and Artandi, S. E. (2020) Regulation of human telomerase in homeostasis and disease, Nat. Rev. Mol. Cell Biol., 21, 384-397, https://doi.org/10.1038/s41580-020-0234-z.
- Rubtsova, M. P., Vasilkova, D. P., Malyavko, A. N., Naraikina, Y. V., Zvereva, M. I., and Dontsova, O. A. (2012) Telomere lengthening and other functions of telomerase, Acta Naturae, 4, 44-61, https://doi.org/10.32607/ 20758251-2012-4-2-44-61.
- Wang, F., Stewart, J. A., Kasbek, C., Zhao, Y., Wright, W. E., and Price, C. M. (2012) Human CST has independent functions during telomere duplex replication and C-strand fill-in, Cell Rep., 2, 1096-1103, https://doi.org/10.1016/ j.celrep.2012.10.007.
- He, Q., and Lim, C. J. (2023) Models for human telomere C-strand fill-in by CST-Polalpha-primase, Trends Biochem. Sci., 48, 860-872, https://doi.org/10.1016/j.tibs.2023.07.008.
- Cai, S. W., and de Lange, T. (2023) CST-Polalpha/Primase: the second telomere maintenance machine, Genes Dev, 37, 555-569, https://doi.org/10.1101/gad.350479.123.
- Zaug, A. J., Lim, C. J., Olson, C. L., Carilli, M. T., Goodrich, K. J., Wuttke, D. S., and Cech, T. R. (2021) CST does not evict elongating telomerase but prevents initiation by ssDNA binding, Nucleic Acids Res., 49, 11653-11665, https://doi.org/10.1093/nar/gkab942.
- Beattie, T. L., Zhou, W., Robinson, M. O., and Harrington, L. (2001) Functional multimerization of the human telomerase reverse transcriptase, Mol. Cell. Biol., 21, 6151-6160, https://doi.org/10.1128/MCB.21.18.6151-6160.2001.
- Harrington, L., McPhail, T., Mar, V., Zhou, W., Oulton, R., Bass, M. B., Arruda, I., and Robinson, M. O. (1997) A mammalian telomerase-associated protein, Science, 275, 973-977, https://doi.org/10.1126/science.275.5302.973.
- Cong, Y. S., Wright, W. E., and Shay, J. W. (2002) Human telomerase and its regulation, Microbiol. Mol. Biol. Rev., 66, 407-425, https://doi.org/10.1128/MMBR.66.3.407-425.2002.
- Wick, M., Zubov, D., and Hagen, G. (1999) Genomic organization and promoter characterization of the gene encoding the human telomerase reverse transcriptase (hTERT), Gene, 232, 97-106, https://doi.org/10.1016/ s0378-1119(99)00108-0.
- Skvortzov, D. A., Rubzova, M. P., Zvereva, M. E., Kiselev, F. L., and Donzova, O. A. (2009) The regulation of telomerase in oncogenesis, Acta Naturae, 1, 51-67, https://doi.org/10.32607/20758251-2009-1-1-51-67.
- Nalobin, D. S., Galiakberova, A. A., Alipkina, S. I., and Glukhov, A. I. (2018) Regulation of telomerase activity, Biol. Bull. Rev., 8, 142-154, https://doi.org/10.1134/S2079086418020068.
- Teichroeb, J. H., Kim, J., and Betts, D. H. (2016) The role of telomeres and telomerase reverse transcriptase isoforms in pluripotency induction and maintenance, RNA Biol., 13, 707-719, https://doi.org/10.1080/15476286. 2015.1134413.
- Surovtseva, Y. V., Churikov, D., Boltz, K. A., Song, X., Lamb, J. C., Warrington, R., Leehy, K., Heacock, M., Price, C. M., and Shippen, D. E. (2009) Conserved telomere maintenance component 1 interacts with STN1 and maintains chromosome ends in higher eukaryotes, Mol. Cell, 36, 207-218, https://doi.org/10.1016/j.molcel. 2009.09.017.
- Chen, L. Y., Redon, S., and Lingner, J. (2012) The human CST complex is a terminator of telomerase activity, Nature, 488, 540-544, https://doi.org/10.1038/nature11269.
- Feng, X., Hsu, S. J., Kasbek, C., Chaiken, M., and Price, C. M. (2017) CTC1-mediated C-strand fill-in is an essential step in telomere length maintenance, Nucleic Acids Res., 45, 4281-4293, https://doi.org/10.1093/nar/gkx125.
- Azzalin, C. M., Reichenbach, P., Khoriauli, L., Giulotto, E., and Lingner, J. (2007) Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends, Science, 318, 798-801, https://doi.org/10.1126/science.1147182.
- Lalonde, M., and Chartrand, P. (2020) TERRA, a multifaceted regulator of telomerase activity at telomeres, J. Mol. Biol., 432, 4232-4243, https://doi.org/10.1016/j.jmb.2020.02.004.
- Cusanelli, E., and Chartrand, P. (2015) Telomeric repeat-containing RNA TERRA: a noncoding RNA connecting telomere biology to genome integrity, Front. Genet., 6, 143, https://doi.org/10.3389/fgene.2015.00143.
- Redon, S., Reichenbach, P., and Lingner, J. (2010) The non-coding RNA TERRA is a natural ligand and direct inhibitor of human telomerase, Nucleic Acids Res., 38, 5797-5806, https://doi.org/10.1093/nar/gkq296.
- Venteicher, A. S., Abreu, E. B., Meng, Z., McCann, K. E., Terns, R. M., Veenstra, T. D., Terns, M. P., and Artandi, S. E. (2009) A human telomerase holoenzyme protein required for Cajal body localization and telomere synthesis, Science, 323, 644-648, https://doi.org/10.1126/science.1165357.
- Deng, Z., Norseen, J., Wiedmer, A., Riethman, H., and Lieberman, P. M. (2009) TERRA RNA binding to TRF2 facilitates heterochromatin formation and ORC recruitment at telomeres, Mol. Cell, 35, 403-413, https://doi.org/10.1016/ j.molcel.2009.06.025.
- Xu, Y., and Komiyama, M. (2023) G-Quadruplexes in Human Telomere: Structures, Properties, and Applications, Molecules, 29, https://doi.org/10.3390/molecules29010174.
- Wang, H., Nora, G. J., Ghodke, H., and Opresko, P. L. (2011) Single molecule studies of physiologically relevant telomeric tails reveal POT1 mechanism for promoting G-quadruplex unfolding, J. Biol. Chem., 286, 7479-7489, https://doi.org/10.1074/jbc.M110.205641.
- Cuesta, J., Read, M. A., and Neidle, S. (2003) The design of G-quadruplex ligands as telomerase inhibitors, Mini Rev. Med. Chem., 3, 11-21, https://doi.org/10.2174/1389557033405502.
- Sadhukhan, R., Chowdhury, P., Ghosh, S., and Ghosh, U. (2018) Expression of telomere-associated proteins is interdependent to stabilize native telomere structure and telomere dysfunction by G-quadruplex ligand causes TERRA upregulation, Cell Biochem. Biophys., 76, 311-319, https://doi.org/10.1007/s12013-017-0835-0.
- Fernandes, R. V., Feretzaki, M., and Lingner, J. (2021) The makings of TERRA R-loops at chromosome ends, Cell Cycle, 20, 1745-1759, https://doi.org/10.1080/15384101.2021.1962638.
- Graf, M., Bonetti, D., Lockhart, A., Serhal, K., Kellner, V., Maicher, A., Jolivet, P., Teixeira, M. T., and Luke, B. (2017) Telomere length determines TERRA and R-loop regulation through the cell cycle, Cell, 170, 72-85.e14, https://doi.org/10.1016/j.cell.2017.06.006.
- Brickner, J. R., Garzon, J. L., and Cimprich, K. A. (2022) Walking a tightrope: the complex balancing act of R-loops in genome stability, Mol. Cell, 82, 2267-2297, https://doi.org/10.1016/j.molcel.2022.04.014.
- Arora, R., and Azzalin, C. M. (2015) Telomere elongation chooses TERRA ALTernatives, RNA Biol., 12, 938-941, https://doi.org/10.1080/15476286.2015.1065374.
- Al-Turki, T. M., and Griffith, J. D. (2023) Mammalian telomeric RNA (TERRA) can be translated to produce valine-arginine and glycine-leucine dipeptide repeat proteins, Proc. Natl. Acad. Sci. USA, 120, e2221529120, https://doi.org/10.1073/pnas.2221529120.
- Rosen, J., Jakobs, P., Ale-Agha, N., Altschmied, J., and Haendeler, J. (2020) Non-canonical functions of telomerase reverse transcriptase – impact on redox homeostasis, Redox Biol., 34, 101543, https://doi.org/10.1016/ j.redox.2020.101543.
- Segal-Bendirdjian, E., and Geli, V. (2019) Non-canonical roles of telomerase: unraveling the Imbroglio, Front. Cell Dev. Biol., 7, 332, https://doi.org/10.3389/fcell.2019.00332.
- Marinaccio, J., Micheli, E., Udroiu, I., Di Nottia, M., Carrozzo, R., Baranzini, N., Grimaldi, A., Leone, S., Moreno, S., Muzzi, M., and Sgura, A. (2023) TERT extra-telomeric roles: antioxidant activity and mitochondrial protection, Int. J. Mol. Sci., 24, 4450, https://doi.org/10.3390/ijms24054450.
- Gazzaniga, F. S., and Blackburn, E. H. (2014) An antiapoptotic role for telomerase RNA in human immune cells independent of telomere integrity or telomerase enzymatic activity, Blood, 124, 3675-3684, https://doi.org/10.1182/blood-2014-06-582254.
- Rubtsova, M., and Dontsova, O. (2020) Human telomerase RNA: telomerase component or more? Biomolecules, 10, 873, https://doi.org/10.3390/biom10060873.
- Rubtsova, M., and Dontsova, O. (2022) How structural features define biogenesis and function of human telomerase RNA primary transcript, Biomedicines, 10, 1650, https://doi.org/10.3390/biomedicines10071650.
- Rubtsova, M., Naraykina, Y., Vasilkova, D., Meerson, M., Zvereva, M., Prassolov, V., Lazarev, V., Manuvera, V., Kovalchuk, S., Anikanov, N., Butenko, I., Pobeguts, O., Govorun, V., and Dontsova, O. (2018) Protein encoded in human telomerase RNA is involved in cell protective pathways, Nucleic Acids Res., 46, 8966-8977, https://doi.org/10.1093/nar/gky705.
- Artandi, S. E., and DePinho, R. A. (2010) Telomeres and telomerase in cancer, Carcinogenesis, 31, 9-18, https://doi.org/10.1093/carcin/bgp268.
- Durant, S. T. (2012) Telomerase-independent paths to immortality in predictable cancer subtypes, J. Cancer, 3, 67-82, https://doi.org/10.7150/jca.3965.
- Tsatsakis, A., Oikonomopoulou, T., Nikolouzakis, T. K., Vakonaki, E., Tzatzarakis, M., Flamourakis, M., Renieri, E., Fragkiadaki, P., Iliaki, E., Bachlitzanaki, M., Karzi, V., Katsikantami, I., Kakridonis, F., Hatzidaki, E., Tolia, M., Svistunov, A. A., Spandidos, D. A., Nikitovic, D., Tsiaoussis, J., and Berdiaki, A. (2023) Role of telomere length in human carcinogenesis (review), Int. J. Oncol., 63, 78, https://doi.org/10.3892/ijo.2023.5526.
- Fang, T., Zhang, Z., Ren, K., and Zou, L. (2024) Genetically determined telomere length as a risk factor for hematological malignancies: evidence from Mendelian randomization analysis, Aging (Albany NY), 16, 4684-4698, https://doi.org/10.18632/aging.205625.
- Fernandes, S. G., Dsouza, R., Pandya, G., Kirtonia, A., Tergaonkar, V., Lee, S. Y., Garg, M., and Khattar, E. (2020) Role of telomeres and telomeric proteins in human malignancies and their therapeutic potential, Cancers (Basel), 12, 1901, https://doi.org/10.3390/cancers12071901.
- Glybochko, P. V., Alyaev, J. G., Potoldykova, N. V., Polyakovsky, K. A., Vinarov, A. Z., Glukhov, A. I., and Gordeev, S. A. (2016) The role of telomerase activity in non-invasive diagnostics of bladder cancer [in Russian], Urologiia, 4, 76-81.
- Glukhov, A. I., Polotdykova, N. V., Gordeev, S. A., Vinarov, A. Z., Polyakovsky, K. A., Rapoport, L. M., Tsarichenko, D. G., Enikeev, D. V., and Glybochko, P. V. (2018) Current trends in bladder cancer diagnosis [in Russian], Urologiia, 5, 100-105, https://doi.org/10.18565/urology.2018.5.100-105.
- Glukhov, A., Potoldykova, N., Taratkin, M., Gordeev, S., Polyakovsky, K., Laukhtina, E., Moschini, M., Abufaraj, M., Shariat, S. F., Sekacheva, M., Enikeev, D., and Glybochko, P. (2021) Detection of urothelial bladder cancer based on urine and tissue telomerase activity measured by novel RT-TRAP-2PCR method, J. Clin. Med., 10, 1055, https://doi.org/10.3390/jcm10051055.
- Casadio, V., and Bravaccini, S. (2021) Telomerase activity analysis in urine sediment for bladder cancer, Methods Mol. Biol., 2292, 133-141, https://doi.org/10.1007/978-1-0716-1354-2_12.
- Powter, B., Jeffreys, S. A., Sareen, H., Cooper, A., Brungs, D., Po, J., Roberts, T., Koh, E. S., Scott, K. F., Sajinovic, M., Vessey, J. Y., de Souza, P., and Becker, T. M. (2021) Human TERT promoter mutations as a prognostic biomarker in glioma, J. Cancer Res. Clin. Oncol., 147, 1007-1017, https://doi.org/10.1007/s00432-021-03536-3.
- Shou, S., Maolan, A., Zhang, D., Jiang, X., Liu, F., Li, Y., Zhang, X., Geer, E., Pu, Z., Hua, B., Guo, Q., Zhang, X., and Pang, B. (2025) Telomeres, telomerase, and cancer: mechanisms, biomarkers, and therapeutics, Exp. Hematol. Oncol., 14, 8, https://doi.org/10.1186/s40164-025-00597-9.
- Penninckx, S., Pariset, E., Cekanaviciute, E., and Costes, S. V. (2021) Quantification of radiation-induced DNA double strand break repair foci to evaluate and predict biological responses to ionizing radiation, NAR Cancer, 3, zcab046, https://doi.org/10.1093/narcan/zcab046.
- Nickoloff, J. A., Sharma, N., Allen, C. P., Taylor, L., Allen, S. J., Jaiswal, A. S., and Hromas, R. (2023) Roles of homologous recombination in response to ionizing radiation-induced DNA damage, Int. J. Radiat. Biol., 99, 903-914, https://doi.org/10.1080/09553002.2021.1956001.
- Mladenov, E., Mladenova, V., Stuschke, M., and Iliakis, G. (2023) New facets of DNA double strand break repair: radiation dose as key determinant of HR versus c-NHEJ Engagement, Int. J. Mol. Sci., 24, 14956, https://doi.org/10.3390/ijms241914956.
- Iliakis, G., Murmann, T., and Soni, A. (2015) Alternative end-joining repair pathways are the ultimate backup for abrogated classical non-homologous end-joining and homologous recombination repair: implications for the formation of chromosome translocations, Mutat. Res. Genet. Toxicol. Environ. Mutagen., 793, 166-175, https://doi.org/10.1016/j.mrgentox.2015.07.001.
- Rogakou, E. P., Pilch, D. R., Orr, A. H., Ivanova, V. S., and Bonner, W. M. (1998) DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139, J. Biol. Chem., 273, 5858-5868, https://doi.org/10.1074/jbc.273.10.5858.
- Karlseder, J., Hoke, K., Mirzoeva, O. K., Bakkenist, C., Kastan, M. B., Petrini, J. H., and de Lange, T. (2004) The telomeric protein TRF2 binds the ATM kinase and can inhibit the ATM-dependent DNA damage response, PLoS Biol., 2, E240, https://doi.org/10.1371/journal.pbio.0020240.
- Imran, S. A. M., Yazid, M. D., Cui, W., and Lokanathan, Y. (2021) The intra- and extra-telomeric role of TRF2 in the DNA damage response, Int. J. Mol. Sci., 22, https://doi.org/10.3390/ijms22189900.
- Denchi, E. L., and de Lange, T. (2007) Protection of telomeres through independent control of ATM and ATR by TRF2 and POT1, Nature, 448, 1068-1071, https://doi.org/10.1038/nature06065.
- Hewitt, G., Jurk, D., Marques, F. D., Correia-Melo, C., Hardy, T., Gackowska, A., Anderson, R., Taschuk, M., Mann, J., and Passos, J. F. (2012) Telomeres are favoured targets of a persistent DNA damage response in ageing and stress-induced senescence, Nat. Commun., 3, 708, https://doi.org/10.1038/ncomms1708.
- Thapar, R. (2018) Regulation of DNA double-strand break repair by non-coding RNAs, Molecules, 23, 2789, https://doi.org/10.3390/molecules23112789.
- Porro, A., Feuerhahn, S., and Lingner, J. (2014) TERRA-reinforced association of LSD1 with MRE11 promotes processing of uncapped telomeres, Cell Rep., 6, 765-776, https://doi.org/10.1016/j.celrep.2014.01.022.
- Shim, G., Ricoul, M., Hempel, W. M., Azzam, E. I., and Sabatier, L. (2014) Crosstalk between telomere maintenance and radiation effects: a key player in the process of radiation-induced carcinogenesis, Mutat. Res. Rev. Mutat. Res., 760, 1-17, https://doi.org/10.1016/j.mrrev.2014.01.001.
- Azzam, E. I., Jay-Gerin, J. P., and Pain, D. (2012) Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury, Cancer Lett., 327, 48-60, https://doi.org/10.1016/j.canlet.2011.12.012.
- Kumar, K., Fornace, A. J., Jr., and Suman, S. (2024) 8-OxodG: a potential biomarker for chronic oxidative stress induced by high-LET radiation, DNA (Basel), 4, 221-238, https://doi.org/10.3390/dna4030015.
- Santos, R. X., Correia, S. C., Zhu, X., Smith, M. A., Moreira, P. I., Castellani, R. J., Nunomura, A., and Perry, G. (2013) Mitochondrial DNA oxidative damage and repair in aging and Alzheimer’s disease, Antioxid Redox Signal., 18, 2444-2457, https://doi.org/10.1089/ars.2012.5039.
- Shokolenko, I. N., Wilson, G. L., and Alexeyev, M. F. (2014) Aging: a mitochondrial DNA perspective, critical analysis and an update, World J. Exp. Med., 4, 46-57, https://doi.org/10.5493/wjem.v4.i4.46.
- Richter, C., Park, J. W., and Ames, B. N. (1988) Normal oxidative damage to mitochondrial and nuclear DNA is extensive, Proc. Natl. Acad. Sci. USA, 85, 6465-6467, https://doi.org/10.1073/pnas.85.17.6465.
- Suman, S., Rodriguez, O. C., Winters, T. A., Fornace, A. J., Jr., Albanese, C., and Datta, K. (2013) Therapeutic and space radiation exposure of mouse brain causes impaired DNA repair response and premature senescence by chronic oxidant production, Aging (Albany NY), 5, 607-622, https://doi.org/10.18632/ aging.100587.
- Tseng, B. P., Giedzinski, E., Izadi, A., Suarez, T., Lan, M. L., Tran, K. K., Acharya, M. M., Nelson, G. A., Raber, J., Parihar, V. K., and Limoli, C. L. (2014) Functional consequences of radiation-induced oxidative stress in cultured neural stem cells and the brain exposed to charged particle irradiation, Antioxid Redox Signal., 20, 1410-1422, https://doi.org/10.1089/ars.2012.5134.
- Barnes, R. P., de Rosa, M., Thosar, S. A., Detwiler, A. C., Roginskaya, V., Van Houten, B., Bruchez, M. P., Stewart-Ornstein, J., and Opresko, P. L. (2022) Telomeric 8-oxo-guanine drives rapid premature senescence in the absence of telomere shortening, Nat. Struct. Mol. Biol., 29, 639-652, https://doi.org/10.1038/s41594-022-00790-y.
- Fouquerel, E., Barnes, R. P., Uttam, S., Watkins, S. C., Bruchez, M. P., and Opresko, P. L. (2019) Targeted and persistent 8-oxoguanine base damage at telomeres promotes telomere Loss and crisis, Mol. Cell., 75, 117-130.e116, https://doi.org/10.1016/j.molcel.2019.04.024.
- Wang, L., Lu, Z., Zhao, J., Schank, M., Cao, D., Dang, X., Nguyen, L. N., Nguyen, L. N. T., Khanal, S., Zhang, J., Wu, X. Y., El Gazzar, M., Ning, S., Moorman, J. P., and Yao, Z. Q. (2021) Selective oxidative stress induces dual damage to telomeres and mitochondria in human T cells, Aging Cell, 20, e13513, https://doi.org/10.1111/ acel.13513.
- Honig, L. S., Kang, M. S., Cheng, R., Eckfeldt, J. H., Thyagarajan, B., Leiendecker-Foster, C., Province, M. A., Sanders, J. L., Perls, T., Christensen, K., Lee, J. H., Mayeux, R., and Schupf, N. (2015) Heritability of telomere length in a study of long-lived families, Neurobiol. Aging, 36, 2785-2790, https://doi.org/10.1016/j.neurobiolaging. 2015.06.017.
- Krivoshchapova, Y. V., and Vozilova, A. V. (2022) The study of the telomere length of the chromosomes in T-lymphocytes of the exposed individuals [in Russian], J. Radiat. Safety Issues, 107, 71-79.
- Smirnova, T. Y., Runov, A. L., Vonsky, M. S., Spivak, D. L., Zakharchuk, A. G., Mikhelson, V. M., and Spivak, I. M. (2012) Telomere length in a population of long-lived people of the northwestern region of Russia, Cell Tissue Biol., 6, 465-471, https://doi.org/10.1134/S1990519X12050112.
- Li, P., Hou, M., Lou, F., Bjorkholm, M., and Xu, D. (2012) Telomere dysfunction induced by chemotherapeutic agents and radiation in normal human cells, Int. J. Biochem. Cell Biol., 44, 1531-1540, https://doi.org/10.1016/ j.biocel.2012.06.020.
- Luxton, J. J., McKenna, M. J., Lewis, A. M., Taylor, L. E., Jhavar, S. G., Swanson, G. P., and Bailey, S. M. (2021) Telomere length dynamics and chromosomal instability for predicting individual radiosensitivity and risk via machine learning, J. Personal. Med., 11, 188, https://doi.org/10.3390/jpm11030188.
- Sishc, B. J., Nelson, C. B., McKenna, M. J., Battaglia, C. L., Herndon, A., Idate, R., Liber, H. L., and Bailey, S. M. (2015) Telomeres and telomerase in the radiation response: implications for instability, reprograming, and carcinogenesis, Front. Oncol., 5, 257, https://doi.org/10.3389/fonc.2015.00257.
- Millet, P., Granotier, C., Etienne, O., and Boussin, F. D. (2013) Radiation-induced upregulation of telomerase activity escapes PI3-kinase inhibition in two malignant glioma cell lines, Int. J. Oncol., 43, 375-382, https://doi.org/10.3892/ijo.2013.1970.
- Wang, X., Liu, Y., Chow, L. S., Wong, S. C., Tsao, G. S., Kwong, D. L., Sham, J. S., and Nicholls, J. M. (2000) Regulation of telomerase activity by gamma-radiation in nasopharyngeal carcinoma cells, Anticancer Res., 20, 433-437.
- Hyeon Joo, O., Hande, M. P., Lansdorp, P. M., and Natarajan, A. T. (1998) Induction of telomerase activity and chromosome aberrations in human tumour cell lines following X-irradiation, Mutat. Res., 401, 121-131, https://doi.org/10.1016/s0027-5107(97)00321-7.
- Ram, R., Uziel, O., Eldan, O., Fenig, E., Beery, E., Lichtenberg, S., Nordenberg, Y., and Lahav, M. (2009) Ionizing radiation up-regulates telomerase activity in cancer cell lines by post-translational mechanism via ras/phosphatidylinositol 3-kinase/Akt pathway, Clin. Cancer Res., 15, 914-923, https://doi.org/10.1158/1078-0432. CCR-08-0792.
- Vysotskaya, O. V., Glukhov, A. I., Semochkina, Y. P., Gordeev, S. A., and Moskaleva, E. Y. (2020) Telomerase activity, mTert gene expression and the telomere length in mouse mesenchymal stem cells in the late period after γ- and γ,n-irradiation and in tumors developed from these cells [in Russian], Biomed. Khim., 66, 265-273, https://doi.org/10.18097/PBMC20206603265.
- Moskaleva, E. Y., Vysotskaya, O. V., Zhorova, E. S., Shaposhnikova, D. A., Saprykin, V. P., Cheshigin, I. V., Smirnova, O. D., and Zhirnik, A. S. (2023) Late effects of γ, n-irradiation of mice: shortening of telomeres and tumors development [in Russian], Med. Radiol. Radiat. Safety, 68, 11-18, https://doi.org/10.33266/ 1024-6177-2023-68-5-11-18.
- Moskaleva, E. Y., Romantsova, A. N., Semochkina, Y. P., Rodina, A. D., Cheshigin, I. V., Degtyarev, A., and Zhirnik, A. (2021) Analysis of the appearance of micronuclei in the erythrocytes and activity of bone marrow cells proliferation after the prolonged low dose Fast neutrons irradiation of mice [in Russian], Med. Radiol. Radiat. Safety, 66, 26-33, https://doi.org/10.12737/1024-6177-2021-66-6-26-33.
- Berardinelli, F., Nieri, D., Sgura, A., Tanzarella, C., and Antoccia, A. (2012) Telomere loss, not average telomere length, confers radiosensitivity to TK6-irradiated cells, Mutat. Res., 740, 13-20, https://doi.org/10.1016/ j.mrfmmm.2012.11.004.
- Wong, K. K., Chang, S., Weiler, S. R., Ganesan, S., Chaudhuri, J., Zhu, C., Artandi, S. E., Rudolph, K. L., Gottlieb, G. J., Chin, L., Alt, F. W., and DePinho, R. A. (2000) Telomere dysfunction impairs DNA repair and enhances sensitivity to ionizing radiation, Nat. Genet., 26, 85-88, https://doi.org/10.1038/79232.
- Ayouaz, A., Raynaud, C., Heride, C., Revaud, D., and Sabatier, L. (2008) Telomeres: hallmarks of radiosensitivity, Biochimie, 90, 60-72, https://doi.org/10.1016/j.biochi.2007.09.011.
- Lustig, A., Shterev, I., Geyer, S., Shi, A., Hu, Y., Morishita, Y., Nagamura, H., Sasaki, K., Maki, M., Hayashi, I., Furukawa, K., Yoshida, K., Kajimura, J., Kyoizumi, S., Kusunoki, Y., Ohishi, W., Nakachi, K., Weng, N. P., and Hayashi, T. (2016) Long term effects of radiation exposure on telomere lengths of leukocytes and its associated biomarkers among atomic-bomb survivors, Oncotarget, 7, 38988-38998, https://doi.org/10.18632/oncotarget.8801.
- Yoshida, K., Misumi, M., Kubo, Y., Yamaoka, M., Kyoizumi, S., Ohishi, W., Hayashi, T., and Kusunoki, Y. (2016) Long-term effects of radiation exposure and metabolic status on telomere length of peripheral blood T cells in atomic bomb survivors, Radiat. Res., 186, 367-376, https://doi.org/10.1667/ RR14389.1.
- Scherthan, H., Sotnik, N., Peper, M., Schrock, G., Azizova, T., and Abend, M. (2016) Telomere length in aged mayak PA nuclear workers chronically exposed to internal alpha and external gamma radiation, Radiat. Res., 185, 658-667, https://doi.org/10.1667/RR14271.1.
- Trickovic, J. F., Sobot, A. V., Joksic, I., and Joksic, G. (2022) Telomere fragility in radiology workers occupationally exposed to low doses of ionising radiation, Arh. Hig. Rada Toksikol., 73, 23-30, https://doi.org/10.2478/ aiht-2022-73-3609.
- Xiao, C. Y., Zhou, F. X., Liu, S. Q., Xie, C. H., Dai, J., and Zhou, Y. F. (2005) Correlations of telomere length and telomerase activity to radiosensitivity of human laryngeal squamous carcinoma cells [in Chinese], Chin. J. Cancer, 24, 653-656.
- Zhong, Y. H., Liao, Z. K., Zhou, F. X., Xie, C. H., Xiao, C. Y., Pan, D. F., Luo, Z. G., Liu, S. Q., and Zhou, Y. F. (2008) Telomere length inversely correlates with radiosensitivity in human carcinoma cells with the same tissue background, Biochem. Biophys. Res. Commun., 367, 84-89, https://doi.org/10.1016/j.bbrc.2007.12.078.
- Goytisolo, F. A., Samper, E., Martin-Caballero, J., Finnon, P., Herrera, E., Flores, J. M., Bouffler, S. D., and Blasco, M. A. (2000) Short telomeres result in organismal hypersensitivity to ionizing radiation in mammals, J. Exp. Med., 192, 1625-1636, https://doi.org/10.1084/jem.192.11.1625.
- Zongaro, S., Verri, A., Giulotto, E., and Mondello, C. (2008) Telomere length and radiosensitivity in human fibroblast clones immortalized by ectopic telomerase expression, Oncol. Rep., 19, 1605-1609, https://doi.org/10.3892/or.19.6.1605.
- Drissi, R., Wu, J., Hu, Y., Bockhold, C., and Dome, J. S. (2011) Telomere shortening alters the kinetics of the DNA damage response after ionizing radiation in human cells, Cancer Prev. Res. (Phila), 4, 1973-1981, https://doi.org/10.1158/1940-6207.CAPR-11-0069.
- Zhou, F. X., Xiong, J., Luo, Z. G., Dai, J., Yu, H. J., Liao, Z. K., Lei, H., Xie, C. H., and Zhou, Y. F. (2010) cDNA expression analysis of a human radiosensitive-radioresistant cell line model identifies telomere function as a hallmark of radioresistance, Radiat. Res., 174, 550-557, https://doi.org/10.1667/RR1657.1.
- Ferrandon, S., Saultier, P., Carras, J., Battiston-Montagne, P., Alphonse, G., Beuve, M., Malleval, C., Honnorat, J., Slatter, T., Hung, N., Royds, J., Rodriguez-Lafrasse, C., and Poncet, D. (2013) Telomere profiling: toward glioblastoma personalized medicine, Mol. Neurobiol., 47, 64-76, https://doi.org/10.1007/s12035-012-8363-9.
- Sharma, G. G., Hall, E. J., Dhar, S., Gupta, A., Rao, P. H., and Pandita, T. K. (2003) Telomere stability correlates with longevity of human beings exposed to ionizing radiations, Oncol. Rep., 10, 1733-1736, https://doi.org/10.3892/or.10.6.1733.
- Bernal, A., and Tusell, L. (2018) Telomeres: implications for cancer development, Int. J. Mol. Sci., 19, 294, https://doi.org/10.3390/ijms19010294.
- Mirjolet, C., Boidot, R., Saliques, S., Ghiringhelli, F., Maingon, P., and Crehange, G. (2015) The role of telomeres in predicting individual radiosensitivity of patients with cancer in the era of personalized radiotherapy, Cancer Treat. Rev., 41, 354-360, https://doi.org/10.1016/j.ctrv.2015.02.005.
- Afshinnekoo, E., Scott, R. T., MacKay, M. J., Pariset, E., Cekanaviciute, E., Barker, R., Gilroy, S., Hassane, D., Smith, S. M., Zwart, S. R., Nelman-Gonzalez, M., Crucian, B. E., Ponomarev, S. A., Orlov, O. I., Shiba, D., Muratani, M., Yamamoto, M., Richards, S. E., Vaishampayan, P. A., Meydan, C., et al. (2020) Fundamental biological features of spaceflight: advancing the field to enable deep-space exploration, Cell, 183, 1162-1184, https://doi.org/ 10.1016/j.cell.2020.10.050.
- Garrett-Bakelman, F. E., Darshi, M., Green, S. J., Gur, R. C., Lin, L., Macias, B. R., McKenna, M. J., Meydan, C., Mishra, T., Nasrini, J., Piening, B. D., Rizzardi, L. F., Sharma, K., Siamwala, J. H., Taylor, L., Vitaterna, M. H., Afkarian, M., Afshinnekoo, E., Ahadi, S., Ambati, A., et al. (2019) The NASA twins study: a multidimensional analysis of a year-long human spaceflight, Science, 364, eaau8650, https://doi.org/10.1126/science. aau8650.
- Luxton, J. J., McKenna, M. J., Taylor, L. E., George, K. A., Zwart, S. R., Crucian, B. E., Drel, V. R., Garrett-Bakelman, F. E., Mackay, M. J., Butler, D., Foox, J., Grigorev, K., Bezdan, D., Meydan, C., Smith, S. M., Sharma, K., Mason, C. E., and Bailey, S. M. (2020) Temporal telomere and DNA damage responses in the space radiation environment, Cell Rep., 33, 108435, https://doi.org/10.1016/j.celrep.2020.108435.
- Welsh, J., and Bevelacqua, J. J. K., M. Mortazavi, S. A. R., and Mortazavi, S. M. J. (2019) Is telomere length a biomarker of adaptive response in space? Curious findings from NASA and residents of high background radiation areas, J. Biomed. Phys. Eng., 9, 381-388, https://doi.org/10.31661/jbpe.v9i3Jun.1151.
- Garcia-Medina, J. S., Sienkiewicz, K., Narayanan, S. A., Overbey, E. G., Grigorev, K., Ryon, K. A., Burke, M., Proszynski, J., Tierney, B., Schmidt, C. M., Mencia-Trinchant, N., Klotz, R., Ortiz, V., Foox, J., Chin, C., Najjar, D., Matei, I., Chan, I., Cruchaga, C., Kleinman, A., et al. (2024) Genome and clonal hematopoiesis stability contrasts with immune, cfDNA, mitochondrial, and telomere length changes during short duration spaceflight, Precis. Clin. Med., 7, pbae007, https://doi.org/10.1093/pcmedi/pbae007.
- Rolles, B., Tometten, M., Meyer, R., Kirschner, M., Beier, F., and Brummendorf, T. H. (2024) Inherited telomere biology disorders: pathophysiology, clinical presentation, diagnostics, and treatment, Transfus. Med. Hemother., 51, 292-309, https://doi.org/10.1159/000540109.
- Savage, S. A. (2022) Dyskeratosis congenita and telomere biology disorders, Hematology Am. Soc. Hematol. Educ. Program, 2022, 637-648, https://doi.org/10.1182/hematology.2022000394.
- Heiss, N. S., Knight, S. W., Vulliamy, T. J., Klauck, S. M., Wiemann, S., Mason, P. J., Poustka, A., and Dokal, I. (1998) X-linked dyskeratosis congenita is caused by mutations in a highly conserved gene with putative nucleolar functions, Nat. Genet., 19, 32-38, https://doi.org/10.1038/ng0598-32.
- Calado, R. T., and Young, N. S. (2009) Telomere diseases, N. Engl. J. Med., 361, 2353-2365, https://doi.org/ 10.1056/NEJMra0903373.
- Tummala, H., Walne, A., Buccafusca, R., Alnajar, J., Szabo, A., Robinson, P., McConkie-Rosell, A., Wilson, M., Crowley, S., Kinsler, V., Ewins, A. M., Madapura, P. M., Patel, M., Pontikos, N., Codd, V., Vulliamy, T., and Dokal, I. (2022) Germline thymidylate synthase deficiency impacts nucleotide metabolism and causes dyskeratosis congenita, Am. J. Hum. Genet., 109, 1472-1483, https://doi.org/10.1016/j.ajhg.2022.06.014.
- Tummala, H., Walne, A., and Dokal, I. (2022) The biology and management of dyskeratosis congenita and related disorders of telomeres, Exp. Rev. Hematol., 15, 685-696, https://doi.org/10.1080/17474086.2022. 2108784.
- Niewisch, M. R., Beier, F., and Savage, S. A. (2023) Clinical manifestations of telomere biology disorders in adults, Hematol. Am. Soc. Hematol. Educ. Program, 2023, 563-572, https://doi.org/10.1182/hematology.2023000490.
- Tummala, H., Walne, A. J., Badat, M., Patel, M., Walne, A. M., Alnajar, J., Chow, C. C., Albursan, I., Frost, J. M., Ballard, D., Killick, S., Szitanyi, P., Kelly, A. M., Raghavan, M., Powell, C., Raymakers, R., Todd, T., Mantadakis, E., Polychronopoulou, S., Pontikos, N., et al. (2024) The evolving genetic landscape of telomere biology disorder dyskeratosis congenita, EMBO Mol. Med., 16, 2560-2582, https://doi.org/10.1038/s44321-024-00118-x.
- Luchkin, A. V., Mikhailova, E. A., Galtseva, I. V., Fidarova, Z. T., Abramova, A. V., Davydova, Yu. O., Kapranov, N. M., Nikiforova, K. A., Kulikov, S. M., and Parovichnikova, E. N. (2023) Telomere length of various blood and bone marrow cells in patients with aplastic anemia [in Russian], Oncohematology, 18, 57-64, https://doi.org/10.17650/1818-8346-2023-18-3-57-64.
- Suliman, M. E., Ansari, M. G. A., Rayis, M. A., Hamza, M. A., Saeed, A. A., Mohammed, A. K., and Al-Daghri, N. M. (2022) Telomere length and telomere repeat-binding protein in children with sickle cell disease, Pediatr. Res., 91, 539-544, https://doi.org/10.1038/s41390-021-01495-6.
- Roka, K., Solomou, E. E., and Kattamis, A. (2023) Telomere biology: from disorders to hematological diseases, Front. Oncol., 13, 1167848, https://doi.org/10.3389/fonc.2023.1167848.
- Skvortsov, D. A., Zvereva, M. E., Shpanchenko, O. V., and Dontsova, O. A. (2011) Assays for detection of telomerase activity, Acta naturae, 3, 48-68.
- Wang, R., Li, J., Jin, R., Ye, Q., Cheng, L., and Liu, R. (2021) Nonradioactive direct telomerase activity detection using biotin-labeled primers, J. Clin. Lab. Anal., 35, e23800, https://doi.org/10.1002/jcla.23800.
- Zhang, X., Lou, X., and Xia, F. (2017) Advances in the detection of telomerase activity using isothermal amplification, Theranostics, 7, 1847-1862, https://doi.org/10.7150/thno.18930.
- Kim, N. W., Piatyszek, M. A., Prowse, K. R., Harley, C. B., West, M. D., Ho, P. L., Coviello, G. M., Wright, W. E., Weinrich, S. L., and Shay, J. W. (1994) Specific association of human telomerase activity with immortal cells and cancer, Science, 266, 2011-2015, https://doi.org/10.1126/science.7605428.
- Skvortsov, D. A., Zvereva, M. E., Rubtsova, M. P., Pavlova, L. S., Petrenko, A. A., Kiselev, F. L., and Dontsova O. A. (2010) Optimized detection method of telomerase activity in cancer diagnostics, Moscow Univ. Chem. Bull., 65, 165-169, https://doi.org/10.3103/S0027131410030119.
- Demina, I. A., Semchenkova, A. A., Kagirova, Z. R., and Popov, A. M. (2018) Flow cytometric measurement of absolute telomere length, Pediatr. Hematol. Oncol. Immunopathol., 17, 66-72, https://doi.org/10.24287/ 1726-1708-2018-17-4-66-72.
- Gutierrez-Rodrigues, F., Santana-Lemos, B. A., Scheucher, P. S., Alves-Paiva, R. M., and Calado, R. T. (2014) Direct comparison of flow-FISH and qPCR as diagnostic tests for telomere length measurement in humans, PLoS One, 9, e113747, https://doi.org/10.1371/journal.pone.0113747.
- Zheng, Y. L., Wu, X., Williams, M., Verhulst, S., Lin, J., Takahashi, Y., Ma, J. X., and Wang, Y. (2024) High-throughput single telomere analysis using DNA microarray and fluorescent in situ hybridization, Nucleic Acids Res., 52, e96, https://doi.org/10.1093/nar/gkae812.
Дополнительные файлы
